
HTRA API 编程指南

用户指南

V0.55.63

2025/10/17

+

API 编程指南 2

目录

1 版本信息 ... 7

2 概述 ... 8

3 设备及 API 版本 ... 9

4 函数类别简介 ... 10

5 API 的调用逻辑与调用地图 ... 11

5.1 标准扫频分析（SWP）的 API 调用地图 .. 11

5.2 时域信号记录分析（IQS）的 API 调用地图 .. 12

5.3 检波分析（DET）的 API 调用地图 ... 14

5.4 实时频谱分析（RTA）的 API 调用地图 .. 16

6 重要变量/重要设置及其概念 ... 18

6.1 系统 ... 18

6.2 幅度 ... 18

6.3 频率 ... 19

6.4 分析 ... 20

6.4.1 检波器和迹线检波器 ... 21

6.5 默认单位 ... 22

7 设备与系统 Device 主要函数 .. 24

7.1 Device_Open ... 24

7.2 Device_Close ... 26

7.3 Device_QueryDeviceState ... 26

7.4 Device_QueryDeviceState_Realtime ... 27

7.5 Device_QueryDeviceInfo ... 27

7.7 Device_QueryDeviceInfo_Realtime ... 28

8 设备与系统 Device 其他函数 .. 29

8.1 Device_SetSysPowerState ... 29

8.2 Device_SetFanState ... 29

8.3 Device_CalibrateRefClock .. 30

8.4 Device_GetNetworkDeviceList .. 31

8.5 Device_SetNetworkDeviceIP ... 32

API 编程指南 3

8.6 Device_SetNetworkDeviceIP_PM1 .. 33

8.7 Device_GetFullUID... 33

8.8 Device_GetHardwareState .. 34

8.9 Device_QueryDeviceInfoWithBus ... 35

8.10 Device_SetFreqScan .. 36

9 系统 Device 与 GNSS 相关函数 ... 37

9.1 Device_SetGNSSAntennaState .. 37

9.2 Device_GetGNSSAntennaState .. 37

9.3 Device_GetGNSSAntennaState_Realtime ... 38

9.4 Device_GetGNSSAltitude ... 39

9.5 Device_AnysisGNSSTime ... 39

9.6 Device_SetDOCXOWorkMode ... 40

9.7 Device_GetDOCXOWorkMode .. 41

9.8 Device_GetDOCXOWorkMode_Realtime .. 41

9.9 Device_GetGNSSInfo ... 42

9.10 Device_GetGNSSInfo_Realtime ... 43

9.11 Device_GetGNSS_SatDate ... 44

9.12 Device_GetGNSS_SatDate_Realtime ... 45

10 标准频谱分析 SWP 主要函数 .. 46

10.1 SWP_ProfileDeInit ... 46

10.2 SWP_Configuration ... 51

10.3 SWP_AutoSet ... 52

10.4 SWP_GetPartialSweep ... 53

10.5 SWP_GetFullSweep ... 55

11 标准频谱分析 SWP 其他函数 .. 57

11.1 SWP_GetPartialSweep_PM1 ... 57

11.2 SWP_ResetTraceHold .. 58

12 相位噪声测量模式 Phase Noise .. 60

12.1 PNM_ProfileDeInit ... 60

12.2 PNM_Configuration ... 60

12.3 PNM_StartMeasure ... 61

API 编程指南 4

12.4 PNM_StopMeasure ... 62

12.5 PNM_GetPartialUpdatedFullTrace .. 62

12.6 PNM_AutoSearch .. 63

12.7 PNM_Preset_FrameDetRatio .. 63

12.8 PNM_Set_FrameDetRatio ... 64

13 IQ 数据记录 IQS 主要函数 ... 67

13.1 IQS_ProfileDeInit ... 67

13.2 IQS_Configuration ... 71

13.3 IQS_BusTriggerStart ... 72

13.4 IQS_BusTriggerStop ... 73

13.5 IQS_GetIQStream .. 73

14 IQ 数据记录 IQS 其他函数 ... 75

14.1 IQS_MultiDevice_WaitExternalSync .. 75

14.2 IQS_MultiDevice_Run .. 75

14.3 IQS_SyncTimer ... 76

14.4 IQS_GetIQStream_PM1 ... 77

14.5 IQS_GetIQStream_PM2 ... 78

14.6 IQS_GetIQStream_Data ... 79

15 检波分析 DET .. 81

15.1 DET_ProfileDeInit .. 81

15.2 DET_Configuration ... 83

15.3 DET_BusTriggerStart .. 84

15.4 DET_BusTriggerStop .. 84

15.5 DET_GetPowerStream ... 85

15.6 DET_SyncTimer .. 86

16 零扫宽 ZeroSpan 模式 .. 87

16.1 ZSP_ProfileDeInit ... 87

16.2 ZSP_Configuration ... 89

17 实时频谱 RTA .. 91

17.1 RTA_ProfileDeInit ... 91

17.2 RTA_Configuration ... 93

API 编程指南 5

17.3 RTA_BusTriggerStart .. 94

17.4 RTA_BusTriggerStop ... 95

17.5 RTA_GetRealTimeSpectrum_Raw .. 95

17.6 RTA_GetRealTimeSpectrum ... 96

17.7 RTA_SyncTimer .. 98

18 数字解调 Digital Demod（选件） ... 99

18.1 Demod_Check ... 99

18.2 Demod_Open .. 99

18.3 Demod_Close .. 99

18.4 Demod_Reset .. 100

18.5 Demod_GetVersion ... 100

18.6 Demod_DeInit ... 101

18.7 Demod_Configuration ... 101

18.8 Demod_Execute .. 102

18.9 Demod_GenSymbolMap ... 105

19 脉冲检测 Pulse Det（选件） ... 106

19.1 Pulse_Open ... 106

19.2 Pulse_Close .. 106

19.3 Pulse_Detect .. 106

19.4 Pulse_Detect_PM1 .. 110

20 辅助信号源 ASG（选件） ... 113

20.1 ASG_ProfileDeInit .. 113

20.2 ASG_Configuration .. 115

21 模拟信号解调 ADM .. 116

21.1 ADM_ Open ... 116

21.2 ADM_Close .. 116

21.3 ADM_AMDemod ... 117

21.4 ADM_FMDemod .. 117

21.5 ADM_AMDemod_PM1 .. 118

21.6 ADM_FMDemod_PM1 .. 121

22 数字信号处理 DSP 迹线分析 ... 124

API 编程指南 6

22.1 DSP_TraceAnalysis_IM3 ... 124

22.2 DSP_TraceAnalysis_IM2 ... 125

22.3 DSP_TraceAnalysis_ChannelPower .. 126

22.4 DSP_TraceAnalysis_XdBBW ... 128

22.5 DSP_TraceAnalysis_OBW ... 129

22.6 DSP_TraceAnalysis_ACPR .. 130

22.7 DSP_SEMAnalysis .. 133

23 数字信号处理 DSP 流数据的分析与处理 ... 136

23.1 DSP_Open .. 136

23.2 DSP_Close .. 136

23.3 DSP_FFT_DeInit ... 137

23.4 DSP_FFT_Configuration ... 138

23.5 DSP_FFT_IQSToSpectrum .. 138

23.6 DSP_DDC_DeInit .. 140

23.7 DSP_DDC_Configuration .. 140

23.8 DSP_DDC_Reset ... 141

23.9 DSP_DDC_GetDelay ... 141

23.10 DSP_DDC_Execute ... 141

23.11 DSP_AudioAnalysis .. 143

23.12 DSP_LPF_DeInit ... 144

23.13 DSP_LPF_Configuration ... 145

23.14 DSP_LPF_Reset .. 145

23.15 DSP_LPF_Execute_Real .. 146

23.16 DSP_LPF_Execute_Complex .. 147

24 附录 Appendix 1：API 返回值索引 ... 149

API 编程指南 7

1 版本信息

版本 内容 时间

0.54.0 初版

1. 设备与API版本介绍

2. 函数类别简介

3. API使用方法

4. API调用逻辑与调用地图

5. 重要变量及设置概念

6. 系统Device，SWP，IQS，DET，RTA，MPS，ASG，DSP，ASD的相关函数用法及

其参数解释。

7. 返回值索引目录。

5-17-2023

0.55.27 1. 修改：重构原本设备与系统章节内容；

2. 新增：SWP模式 SWP_AutoSet 函数。

3. 新增：系统 Device与GNSS相关函数章节。

3-28-2024

0.55.61 1. 新增：相位噪声测量模式（Phase Noise Measurement）章节；

2. 新增：IQS模式 IQS_GetIQStream_PM2 函数；

3. 新增：零扫宽模式（ZeroSpan）章节；

4. 新增：RTA模式RTA_GetRealTimeSpectrum_Raw函数；

5. 新增：数字解调模式（Digital Demod）章节；

6. 新增：脉冲检测（Pulse Det）章节；

7.新增：迹线检波器和检波器的相关说明；

8. 删除：API在Windows/Linux下的使用方法（已在API范例使用指南中说明）；

9. 删除：SWP模式GetPatialUpdatedFullSweep函数；

10. 修 改 ： 设 备 与 系 统 Device 章 节 新 增 Device_SetNetworkDeviceIP,

Device_SetNetworkDeviceIP_PM1, Device_GetFullUID等函数；

11. 修改：函数所有示例全部修改为最新示例。

7-16-2025

0.55.62 1.新增：DSP新增DSP_SEMAnalysis函数； 8-19-2025

0.55.63 1. 修改：重构AM/FM模拟解调。 10-17-2025

API 编程指南 8

2 概述

此API系统是基于C编写的动态链接库，用于对设备进行编程开发。

设备的工作模式是API系统的核心概念，不同的工作模式有不同的测试行为与测试能力，

开发的第一步就是针对任务要求，选择合适的工作模式。HTRA API系统的工作模式包括标准频

谱分析模式（SWP）、IQ数据记录模式（IQS）、检波分析模式（DET）、实时频谱模式（RT

A）。充分理解各工作模式的执行机制，并根据应用目标选择合适的工作模式与设备参数，有

助于充分发挥设备的工作效能，并获取更为准确的测量结果。

API调用的基本流程包括五个步骤：

第一步，打开设备资源；

第二步，根据工作模式调用相应类别的API函数，将设备配置至指定的工作模式；

第三步，通过该模式下对应的数据获取函数得到测量数据；

第四步，利用测量数据，执行用户自定义的分析过程，实现应用目标。

第五步，测试结束，关闭设备，释放相关内存资源。

图1 SWP 模式典型的调用步骤

在开始您的应用开发前，请仔细阅读章节——API的调用逻辑与调用地图。以此调用地图

作为应用程序的处理框架，有助于快速构建稳健高效的程序。

设备的工作模式与适用场景

标准频谱

（SWP）

•全景频谱扫描

•频谱监测

•相位噪声

•谐波测试

•杂散测试

•信道功率测试

•OBW、ACPR测试

IQ信号流

（IQS）

•时域信号查看

•IQ记录

•AM解调

•FM解调

•用户应用

检波分析

（DET）

•脉冲信号观察

•功率时间关系

实时频谱

（RTA）

•突发信号观察

•隐秘信号发现

•频谱动态观察

打开设备

Device_Open()

配置工作模式与参数

SWP_Configuration()

获取测量数据

SWP_GetPartialSweep()

用户代码

UserCode

关闭设备

Device_Close()

API 编程指南 9

3 设备及 API 版本

系统是多个软件的联合运行，在本系统中，涉及的软件包括：1）设备主控固件（MFM）、

2）FPGA固件（FFM）、3）API、4）SAStudio4等应用程序（如果使用到）。

本系统采用统一的软件版本命名规则来管理所有上述软件。采用x.y.z 的形式命名软件版本。

其中x为主版本号，y为次版本号，z为子版本号。次版本y代表了软件的兼容性标识，系统中所

有软件必须具有相同的y次版本号，才能严格正确的运行。

例如：MFM版本 = 0.55.1，FFM版本 = 0.55.2，API版本 = 0.55.4，SAStudio4版本 = 1.55.45，

此组合所有软件具有y = 55，则可以匹配运行。

例如：MFM版本 = 0.38.1，FFM版本 = 0.38.4，API版本 = 0.54.2，SAStudio4版本 = 1.55.45，

此组合中API版本为y = 54，与MFM、FFM、SAStudio4的版本不匹配，则无法运行或可能得到错

误的结果。

请注意所使用的API版本与本手册封面所标识的版本对应，以免出现本手册说明与实际API

不一致的情况。

API 编程指南 10

4 函数类别简介

表1 API 函数类别简介

函数类别 说明

设 备 与 系 统

Device

全局功能，可在任意工作模式下调用此类别下的函数。该类别包括对设备打开、关

闭、全局性设置、获取设备信息和获取设备状态等功能。

标 准 频 谱 分 析

SWP

该模式下，接收机根据配置进行跳频以实现频率扫描，基带对每个频点获取的分析带

宽内的时域数据进行频谱分析，并将频谱结果返回给用户。SWP模式适用于面向频率

迹线的测量与分析应用。

该类别包括对SWP模式进行配置、获取频谱数据、触发控制等功能。

接收机/IQ流 IQS 该模式下，接收机将中心频点设置为指定频率，并保持本振频率等接收机状态固定。

基带根据指定的触发信号对分析带宽内的时域数据进行采集并返回给用户。IQS模式适

用于信号记录、解调分析、同时多维度分析应用。

该类别包括对IQS模式进行配置、获取频谱数据、触发控制等功能。

检波分析DET 该模式下，接收机将中心频点设置为指定频率，并保持本振频率等接收机状态固定。

基带对分析带宽内的时域信号进行检波分析并根据指定的触发信号将功率结果返回给

用户。DET模式适用于关注 带内功率-时间 关系的应用，例如脉冲参数测量。

该类别包括对DET模式进行配置、获取频谱数据、触发控制等功能。

实 时 频 谱 分 析

RTA

该模式下，接收机将中心频点设置为指定频率，并保持本振频率等接收机状态固定。

基带对分析带宽内的时域信号进行连续频谱分析，并将频谱结果返回给用户。RTA模

式适用于关注瞬时及突发信号的应用，例如干扰排查、复杂电磁环境下特征信号识别

等。

该类别包括对RTA模式进行配置、获取频谱数据、触发控制等功能。

辅助信号源ASG 全局功能，控制设备或其中的模拟信号源选件，可在任意工作模式下调用。该类别包

括设置输出单音、扫频等功能。

信号处理DSP 通用后处理函数，与硬件状态无关。

该类别包括对IQ数据进行DDC、FFT分析、视频检波等；对频谱迹线进行测量分析，比

如IM3、相位噪声、信道功率、占用带宽等功能。

模 拟 调 制 解 调

ASD

模拟解调类后处理函数，与硬件状态无关。

该类别包括AM解调、FM解调等功能。

API 编程指南 11

5 API 的调用逻辑与调用地图

5.1 标准扫频分析（SWP）的 API 调用地图

图2 SWP 模式调用流程图

API 编程指南 12

5.2 时域信号记录分析（IQS）的 API 调用地图

图3 IQS 模式调用流程图(触发模式为 Fixed)

API 编程指南 13

图4 IQS 模式调用流程图(触发模式为 Adaptive)

API 编程指南 14

5.3 检波分析（DET）的 API 调用地图

图5 DET 模式调用流程图(触发模式为 Fixed)

API 编程指南 15

图6 DET 模式调用流程图(触发模式为 Adaptive)

API 编程指南 16

5.4 实时频谱分析（RTA）的 API 调用地图

图7 RTA 模式调用流程图(触发模式为 Fixed)

API 编程指南 17

图8 RTA 模式调用流程图(触发模式为 Adaptive)

API 编程指南 18

6 重要变量/重要设置及其概念

此章节罗列了频谱分析仪/接收机产品所涉及到的部分重要参数及其概念，充分理解这些

参数与概念对于正确并高效地使用设备具有重要意义。在此汇总以便于预览或遇到问题时查阅。

6.1 系统

表2 系统参数与相关概念信息说明表

序 参数与概念 适用模式 说明

1 设备内存指针

void** Device

Device/SWP/I

QS/DET/RTA

此参数为设备运行所需的内存空间引用。调用API时，必

须通过此引用来索引此次打开的设备。

2 设备ID

DeviceUID

Device 每个设备具有唯一的设备ID标识，请使用该ID用于区分不

同的设备个体。

6.2 幅度

表3 幅度参数与相关概念信息说明表

序 参数与概念 适用模式 说明

1 参考电平

RefLevel_dBm

SWP/IQS/D

ET/RTA

系统默认根据参考电平来自动配置衰减器和前置放大器。参

考电平可以简单理解为系统不饱和所能接受的最大输入功

率。系统在处理参考电平时会保留一定裕量，一般为1~6dB，

所以在一些频率处，即使输入功率大于参考电平，系统仍然

不会报告饱和警告，此为正常现象。根据预期的输入功率设

置参考电平，使得参考电平稍高于预期的输入信号最大功

率，一般可以获得良好的动态范围。比如预期信号为-3dBm

的单音信号，则设置参考电平为0dBm，可获得良好的观察动

态。

2 衰减

Atten

SWP/IQS/D

ET/RTA

衰减默认为自动（Atten = -1），此时系统仅由参考电平指定

通道衰减。当需要手动设置通道衰减时，请设置Atten为指定

值。

3 前置放大器

Preamplifier

SWP/IQS/D

ET/RTA

对于带有前置放大器的设备，是否启用前置放大器会明显影

响系统的噪声性能和线性度。

启用前置放大器：可降低系统噪声，但会减小系统可承受的

最大线性输入功率以及最大损毁功率。

关闭前置放大器：可提高可承受的输入功率上限，但系统噪

声会相对较高。

API 编程指南 19

系统通常可以配置为：

根据参考电平自动控制前置放大器的启用或关闭；

强制关闭前置放大器，以避免因过载而造成损坏。

4 模拟中频带宽

AnalogIFBWGrade

SWP/IQS/D

ET/RTA

对于配置有多个模拟中频滤波器的设备，系统提供多个不同

特性的中频通道供选择。不同的模拟中频带宽具有不同的带

外抑制、带内平坦度、群延时等性能，请根据应用需要选择

合适的中频档位。

5 中频增益档位

IFGainGrade

SWP/IQS/D

ET/RTA

系统允许用户调节中频增益，以在杂散、线性度和噪声水平

之间进行优化。档位序号越高，中频增益越大，相邻档位通

常相差 1 dB～3 dB。

系统总增益 = 射频增益 + 中频增益。在参考电平不变（总增

益固定）的情况下：

提高中频增益 → 混频器输入功率降低 → 杂散性能改善、线性

度提升，但噪声性能会变差。

降低中频增益 → 混频器输入功率升高 → 杂散性能和线性度可

能变差，但噪声性能会改善。

当射频增益已达最大（即参考电平很低，如 -60 dBm）：

进一步提高中频增益会提升系统总增益，从而可能改善噪声

性能。

当射频增益未达最大（如参考电平0 dBm）：

提高中频增益 → 优化杂散和线性度，但噪声性能恶化；

降低中频增益 → 杂散和线性度变差，但噪声性能改善。

6.3 频率

表4 频率参数与概念相关信息说明表

序 参数与概念 适用模式 说明

1 频率指定方式

FreqAssignment

SWP SWP 模式下，允许用户通过此变量以 StartStop 方式或

CenterSpan方式来指定频率扫描范围。

2 起始、终止频率

中心频率与扫宽

StartFreq_Hz

StopFreq_Hz

CenterFreq_Hz

Span_Hz

3 迹线点数策略 SWP

API 编程指南 20

TracePointStrategy 在SWP模式下，系统的频谱分析方式由TracePointStrategy决

定：

TracePointStrategy = BinSizeAssined 时：系统采用 扫描法 进行

频谱分析，迹线点数由 TracePoints 指定，此时 TraceAlign 设

置无效。

TracePointStrategy 为其他值 时：系统采用 FFT 分析法 进行频

谱分析。由于底层软件实现和迹线检波机制的限制，原生分

析频率点无法精确对齐到配置的起始与终止频率。返回的迹

线数据点数会 略微超出 配置的频率范围。

对此，用户可按需处理：

对两端数据进行截取，以匹配所需的频率范围或设置

TraceAlign = AlignToStart，将迹线的实际起始频率与配置的起

始频率对齐（但终止频率仍需截取处理）。

在 FFT 分 析 法 下 ， 用 户 可 以 设 定 期 望 的 迹 线 点 数

（TracePoints），但由于底层实现的限制，实际返回的迹线

点数通常无法精确达到设定值，系统会返回一个最接近可用

的点数。

4 迹线点数

TracePoints

5 迹线对齐

TraceAlign

6.4 分析

表5 分析参数与相关概念信息说明表

序 参数与概念 适用模式 说明

1 杂散抑制

SpurRejection

SWP 系统提供关闭、标准和增强三种杂散抑制模式。该功能能

有效抑制大部分组合分量杂散，但不会改善系统的剩余响

应，同时会降低扫描速度和时变信号的测量能力。

对于稳态信号（如单音信号）测试，开启杂散抑制能显著

提升无杂散动态范围。

对于快速时变信号（如调制信号）测试，开启该功能可能

导致信号偶发丢失或功率测量不准确，因此需谨慎使用。

建议通过切换功能开关并观察频谱变化，判断当前测试场

景是否适合开启杂散抑制。

2 功耗平衡

PowerBalance

SWP 在SWP模式下，用户可以通过设置功耗平衡参数在扫描速

度与设备功耗之间进行权衡：

功耗平衡 = 0：系统以 最高扫描速度 运行；

功耗平衡 = 40~1000（常规设置值）：数值越大，扫描速

度越低，同时 功耗也越低。

API 编程指南 21

需要特别注意，功耗平衡数值越高，时变信号检测能力下

降越明显。对于高时变信号检测的应用场景，需要谨慎设

置。

3 窗型

Window

SWP/RTA 在执行基于FFT的频谱分析时，系统提供多种窗函数，不

同窗型各有优势，请根据测试需求选择：

FlatTop 窗：

具备优良的幅度准确性，可显著减小栅栏效应带来的幅度

误差，适用于 对幅度精度要求较高 的测试场合。

Blackman‑Nuttall 窗：

主瓣窄，频率分辨率高，在相同 RBW 下扫描速度快于 Flat

Top 窗，适用于 高频率分辨率 和 快速扫描 的测试场景。

LowSideLobe窗：

具有极低的旁瓣电平，能有效抑制强信号对邻近频率的干

扰，适用于动态范围要求高、强弱信号共存的测试场景。

4 FFT执行策略

FFTExcutionStrategy

SWP 在标准频谱分析模式下，用户可以选择信号处理的运算方

式：

自动模式：由系统根据RBW自动选择FPGA或CPU运算；

仅FPGA运算：显著降低对 CPU 的处理负载，但由于单次FF

T点数受限，在RBW≤5 kHz时扫描速度较慢；

仅CPU运算：允许使用超过64k点的FFT，在中小RBW（≤5 k

Hz）时可获得更高的扫描速度。

5 扫描时间

SweepTime

SWP/RTA 本系统中定义扫描时间为完成一次从起始频率至终止频率

扫描所需要的总时间。

当设置SweepTime = SWTMode_Manual时，该参数为绝对

时间；当指定为*N时，该参数为扫描时间倍率，即按照最

小扫描时间的N倍进行扫描。

6

抽取倍数

DecimateFactor

IQS/DET/RTA IQS/DET/RTA模式下，系统使用抽取倍数来设置分析带

宽。

分析带宽 = 抽取倍数为1时的分析带宽 / 抽取倍数。由于底

软软硬件限制，抽取倍数无法任意可设，系统会根据期望

的抽取倍数选择就近可用的值进行配置并反馈用户。

7 总线超时

BusTimeOut

IQS/DET/RTA 总线超时用于为获取数据的相关函数设定一个执行时间上

限。如果系统在该时间内未能获取到有效数据，就会强制

返回，防止系统无限期等待。

6.4.1 检波器和迹线检波器

API 编程指南 22

检波器：在同一个本振频点下，采集检波比帧数据，按照检波器特性，对多帧数据逐频点

检波，最终生成特征值帧。下图以PosPeak Detector为例，介绍正峰值检波的过程，其中Frame

0、Frame 1、Frame 2为不同时刻采集的数据，After PosPeak Detector为正峰值检波后的数据。

图9 正峰值检波

迹线检波器：根据选定的迹线检波器，以迹线检波比为步进，对整条频谱迹线进行检波，

从而生成特征值迹线。下图以PosPeak TraceDetector为例，介绍正峰值迹线检波的过程，其中

Before PosPeak Trace Detector为正峰值迹线检波前的数据，After PosPeak Trace Detector为正峰值

迹线检波后的数据。

图10 正峰值迹线检波

6.5 默认单位

API 编程指南 23

表6 主要变量单位汇总表

变量 单位

频率 Hz

功率 dBm

电压 V

时间 s

API 编程指南 24

7 设备与系统 Device 主要函数

在调用任何设备硬件关联的API函数前都需要首先调用Device_Open函数对设备进行打开，

并在完成业务程序之后，调用Device_Close函数对设备进行关闭，以释放内存空间。

7.1 Device_Open

int Device_Open(void** Device, int DeviceNum, const BootProfile_TypeDef* BootProfile,BootInfo_TypeDef* Bo

otInfo)

功能描述

未打开的设备需要被打开才能进行后续API的调用。调用本函数以打开设备，函数将返回一个句柄，该句

柄用于在后续API调用中指向目标设备。当有多台设备时，通过指定不同的设备号（DeviceNum）来分别

打开对应的设备，并获取其设备句柄。在后续API调用中，使用设备句柄来指定哪台设备被操作。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。在调用其它API时，通过此句柄来索引需要调用的设备。

int DeviceNum 指定设备号，当主机连接有多台设备时，可通过此设备号来选择相应的

设备，设备号从0开始累加。

BootProfile_TypeDef*

BootProfile

设置启动配置。

BootInfo_TypeDef* BootInfo 启动信息反馈。

BootProfile_TypeDef 详细定义

PhysicalInterface_TypeDef

PhysicalInterface

指定以何种物理端口来尝试设备的开启，必须正确设置才能正常开启设

备，否则将无法打开设备。一台设备可能配备多种接口。

USB：使用USB接口进行数据传输。

ETH：使用100M/1000M 以太网进行数据传输；

DevicePowerSupply_TypeDef

DevicePowerSupply

指定设备的供电方式，必须正确设置才能正常开启设备，否则将无法打

开设备。

USBPortAndPowerPort：使用USB数据端口及独立电源端口双供电；

USBPortOnly：仅使用USB数据端口供电；

Others：当使用非USB总线时，比如ETH，使用此选项。

IPVersion_TypeDef

ETH_IPVersion

以太网IP版本：

IPv4：使用IPv4地址；

API 编程指南 25

uint8_t ETH_IPAddress[16] 当物理接口为 ETH 时，用于指定 IP 地址，例如目标 IP 地址为

192.168.1.100，ETH_IPAddress[0] = 192；ETH_IPAddress[1] = 168；

ETH_IPAddress[2] = 1；ETH_IPAddress[3] = 100；

当网络协议为IPv4时，只需要填前4个数即可，数组其余部分不需要填。

uint16_t ETH_RemotePort 当物理接口为ETH时，指定侦听端口。

int32_t ETH_ErrorCode 当物理接口为ETH时，返回连接过程中的错误代码。

int32_t ETH_ReadTimeOut 当物理接口为ETH时，设定通信的超时时间。当设备配置与数据函数在

此时间内未响应时，函数将强制返回并返回错误代码。

BootInfo_TypeDef 详细定义

DeviceInfo_TypeDef DeviceInfo 设备信息

uint32_t BusSpeed 总线带宽信息

uint32_t BusVersion 总线固件版本。

uint32_t APIVersion 当前API版本。采用主版本，子版本，修订版本表示。

bit[31..16]表示主版本，bit[15..8]表示子版本，bit[7..0]表示修订。

int ErrorCodes[7] 启动过程中的错误代码清单。

int Errors 启动过程中的错误总数。

int WarningCodes[7] 启动过程中的警告代码清单。

int Warnings 启动过程中的警告总数。

DeviceInfo_TypeDef 详细定义

uint64_t DeviceUID 设备独有的ID号。

uint16_t Model 设备型号。

uint16_t HardwareVersion 设备硬件版本。

uint16_t MFWVersion 设备主控固件版本。

uint16_t FFWVersion 设备FPGA固件版本。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 必须在其它函数调用前调用此函数，且只需在最开始前调用一次即可，

后续其它函数可根据此函数返回的设备内存地址执行相关操作。对于任

何非异常的Device_Open调用，必须在整个模块使用需求结束之后，调

用Device_Close函数，以释放内存。

示例 请参考Device_QueryDeviceInfo_Realtime() 函数的相关示例。

API 编程指南 26

7.2 Device_Close

int Device_Close(void** Device)

功能描述

关闭已打开频谱仪设备，在结束调用设备时需要调用此函数已关闭USB设备及释放设备所开辟的内存空

间。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 只需在程序执行的最后调用此函数，调用此函数后USB设备连接关闭，

内存空间释放。如需要重新使用设备，则需要再次通过调用

Device_Open，来建立USB连接及打开设备。

示例 请参考Device_QueryDeviceInfo_Realtime() 函数的相关示例。

7.3 Device_QueryDeviceState

int Device_QueryDeviceState(void** Device, DeviceState_TypeDef* DeviceState)

功能描述

获取当前频谱仪的设备状态信息，包括设备温度、硬件工作状态、地理时间信息（需要选件支持）等，非

实时方式，不打断数据获取，但信息只在获取数据包后更新。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

DeviceState_TypeDef*

DeviceState

当前设备状态相关信息的结构体指针。调用此函数后，该指针指向的相

关信息会被更新成最新的值。

DeviceState_TypeDef 详细定义

int16_t Temperature 设备的温度，摄氏度 = 0.01 * Temperature

double AbsoluteTimeStamp 绝对时间戳。

float Latitude 纬度坐标,北纬为正数，南纬为负数，以此区分南北纬。

float Longitude 经度坐标,东经为正数，西经为负数，以此区分东西经。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

API 编程指南 27

示例 请参考 Device_QueryDeviceInfo_Realtime()函数的相关示例。

7.4 Device_QueryDeviceState_Realtime

int Device_QueryDeviceState_Realtime(void** Device, DeviceState_TypeDef* DeviceState)

功能描述

获取设备状态，包括设备温度、硬件工作状态、地理时间信息（需要选件支持）等，实时获取，短时间内

会占用数据通道。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

DeviceState_TypeDef*

DeviceState

请参考 Device_QueryDeviceState ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例 请参考 Device_QueryDeviceInfo_Realtime()函数的相关示例。

7.5 Device_QueryDeviceInfo

int Device_QueryDeviceInfo(void** Device, DeviceInfo_TypeDef* DeviceInfo)

功能描述

获取设备信息，包括设备序列号及软硬件版本等相关信息，非实时方式，不打断数据获取，但信息只在获

取数据包后更新。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

DeviceInfo_TypeDef* DeviceInfo 返回当前设备序列号及软硬件版本等相关信息的结构体指针。调用此函

数后，该指针指向的相关信息会被更新成最新的值。

请参考 Device_Open ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例 请参考 Device_QueryDeviceInfo_Realtime()函数的相关示例。

API 编程指南 28

7.7 Device_QueryDeviceInfo_Realtime

int Device_QueryDeviceInfo_Realtime(void** Device, DeviceInfo_TypeDef* DeviceInfo)

功能描述

获取设备信息，包括设备序列号及软硬件版本号等相关信息，实时获取，短时间内会占用数据通道，但可

以保证总是获得即时的设备信息。

兼容性 0.55.0及之后版本支持

参数说明 同函数Device_QueryDeviceInfo

void** Device 设备句柄。

DeviceInfo_TypeDef* DeviceInfo 返回当前设备序列号及软硬件版本等相关信息的结构体指针。调用此函

数后，该指针指向的相关信息会被更新成最新的值。

请参考 Device_Open ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

DeviceState_TypeDef DeviceState;

Status = Device_QueryDeviceState_Realtime(&Device, &DeviceState);

DeviceInfo_TypeDef DeviceInfo;

Status = Device_QueryDeviceInfo_Realtime(&Device, &DeviceInfo);

Status = Device_Close(&Device);

API 编程指南 29

8 设备与系统 Device 其他函数

8.1 Device_SetSysPowerState

int Device_SetSysPowerState(void** Device, SysPowerMode_TypeDef SysPowerMode)

功能描述

设置设备的电源状态，包括上电运行、射频部分下电、射频部分待机等。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

SysPowerMode_TypeDef

SysPowerMode

设备功耗控制：

PowerOn: 系统所有工作区均上电；

RFPowerOFF: 射频处于下电状态，不可快速唤醒。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SysPowerState_TypeDef SysPowerMode = PowerON;

Status = Device_SetSysPowerState(&Device, SysPowerMode);

Status = Device_Close(&Device);

8.2 Device_SetFanState

int Device_SetFanState(void** Device, const FanState_TypeDef FanState, const float ThreshouldTe

mperature)

功能描述

控制设备风扇工作模式。（仅N45、N60、M60、M80设备支持）

兼容性 0.55.0及之后版本支持

API 编程指南 30

参数说明

void** Device 设备句柄。

const FanState_TypeDef FanState 风扇模式：

FAN_FORCE_ON:强制常开；

FAN_FORCE_OFF:强制常关；

FAN_AUTO:自动模式。

const float ThreshouldTemperatu

re

门限温度（摄氏度），当FanState = FAN_AUTO时，若设备温度高于此温

度，系统启动风扇，并在低于此温度10℃时，关闭风扇。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

FanState_TypeDef FanState = FanState_On;

float Temperature = 0;

Status = Device_SetFanState(&Device, FanState, Temperature);

Status = Device_Close(&Device);

8.3 Device_CalibrateRefClock

int Device_CalibrateRefClock(void** Device, ClkCalibrationSource_TypeDef ClkCalibrationSource,

const double TriggerPeriod_s, const uint64_t TriggerCount, const bool RewriteRFCal, double* RefC

LKFreq_Hz)

功能描述

通过外触发信号或系统内GNSS1PSS校准参考时钟频率。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

ClkCalibrationSource_TypeDef

ClkCalibrationSource

选择校准所使用的定时信号源：

CalibrateByExternal: 通过外触发进行Clock校准；

API 编程指南 31

CalibrateByGNSS1PPS = 0x01: 通过GNSS-1PPS进行Clock校准。

const double TriggerPeriod_s 输入已知的校准信号的准确周期，该值精度将直接影响校准效果。

const uint64_t TriggerCount 指定用于校准的触发次数，对于使用GNSS1PPS进行校准的场景，触发次

越数多，通常对于抖动误差的抑制就越好，校准效果越好，但校准时间

也越长。使用GNSS1PSS时，建议触发次数大于30，即校准超过30秒。

const bool RewriteRFCal 0：校准结果不写入校准文件，设备下电后校准结果失效；

1：校准结果写入校准文件，设备上下电后仍然保持校准状态。

double* RefCLKFreq_Hz 反馈本次校准得到的新的参考时钟频率，即校准结果。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

ClkCalibrationSource_TypeDef ClkCalibrationSource = CalibrateByExternal;

double TriggerPeriod_s = 1; uint64_t CalibrationTimes = 1 * 60;

bool RewriteRFCal = false; double RefCLKFreq_Hz = 0;

Status = Device_CalibrateRefClock(&Device, ClkCalibrationSource, TriggerPeriod_s, CalibrationTimes, RewriteRF

Cal, &RefCLKFreq_Hz);

Status = Device_Close(&Device);

8.4 Device_GetNetworkDeviceList

int Device_GetNetworkDeviceList (uint8_t*DeviceCount,NetworkDeviceInfo_TypeDef DeviceInfo

[64], uint8_t LocalIP[4], uint8_t LocalMask[4])

功能描述

在使用ETH接口的设备时，获取网络中所有设备的IP地址和子网掩码等信息。

兼容性 0.55.0及之后版本支持

参数说明

uint8_t*DeviceCount 设备数量。

NetworkDeviceInfo_TypeDef De

viceInfo[64]

返回设备序列号、设备类型和设备版本等设备信息。

API 编程指南 32

uint8_t LocalIP[4] 返回本地IP地址。

uint8_t LocalMask[4] 返回本地子网掩码。

NetworkDeviceInfo_TypeDef 结构体定义

uint64_t DeviceUID 设备序列号。

uint16_t Model 设备类型。

uint16_t HardwareVersion 硬件版本。

uint32_t MFWVersion MCU固件版本。

uint32_t FFWVersion FPGA固件版本。

uint8_t IPAddress[4] IP地址。

uint8_t SubnetMask[4] 子网掩码。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无。

示例

int Status = -1; uint8_t DeviceCount = 0; uint8_t LocalIP[4]; uint8_t LocalMask[4];

NetworkDeviceInfo_TypeDef DeviceInfo[64];

Status = Device_GetNetworkDeviceList(&DeviceCount, DeviceInfo, LocalIP, LocalMask);

8.5 Device_SetNetworkDeviceIP

int Device_SetNetworkDeviceIP (const uint64_t DeviceUID, const uint8_t IPAddress[4], const uint

8_t SubnetMask[4])

功能描述

使用ETH接口的设备时，通过设备UID，配置网络设备的IP地址和子网掩码。

兼容性 0.55.0及之后版本支持

参数说明

const uint64_t DeviceUID 设备序列号。

const uint8_t IPAddress[4] 输入要配置的IP地址。

const uint8_t SubnetMask[4] 输入要配置的子网掩码。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; uint64_t DeviceUID = 31325119004c0048;

uint8_t IPAddress[4]={ 192,168,2,100};uint8_t SubnetMask[4] = {255, 255, 255,0};

Status = Device_SetNetworkDeviceIP(DeviceUID, IPAddress, SubnetMask);

API 编程指南 33

8.6 Device_SetNetworkDeviceIP_PM1

int Device_SetNetworkDeviceIP_PM1 (const uint8_t DeviceIP[4], const uint8_t IPAddress[4], cons

t uint8_t SubnetMask[4])

功能描述

通过NX系列设备现有的IP地址，为设备设置新的IP地址和子网掩码。

兼容性 0.55.0及之后版本支持

参数说明

const uint8_t DeviceIP[4] 输入现在的IP地址。

const uint8_t IPAddress[4] 输入要修改的IP地址。

const uint8_t SubnetMask[4] 输入要修改的子网掩码。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无。

示例

int Status = -1;

uint8_t DeviceIP[4]={192,168,1,100};

uint8_t IPAddress[4]={ 192,168,2,100};

uint8_t SubnetMask[4] = {255, 255, 255,0};

Status = Device_SetNetworkDeviceIP_PM1 (DeviceIP, IPAddress, SubnetMask);

8.7 Device_GetFullUID

int Device_GetFullUID (void** Device, uint64_t* UID_L64, uint32_t* UID_H32)

功能描述

获取完整UID信息。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

uint64_t* UID_L64 设备对应的UID的低64位。

uint32_t* UID_H32 设备对应的UID的高32位。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

API 编程指南 34

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface =USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

uint64_t UID_L64;uint32_t UID_H32;

Status = Device_GetFullUID(&Device, & UID_L64, & UID_H32);

Status = Device_Close(&Device);

8.8 Device_GetHardwareState

int Device_GetHardwareState (void** Device, HardWareState_TypeDef* HardWareState)

功能描述

获取硬件状态信息。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

HardWareState_TypeDef* Hard

WareState

返回GNSS 外设类型、设备是否支持信号源功能、设备是否支持ADC可变

采样率等信息。

HardWareState_TypeDef 结构体定义

GNSSPeriphType_TypeDef GNSS

PeriphType

GNSS外设类型。

GNSS_None = 0：无外设；

GNSS_For_EIO = 1：EIO；

GNSS_For_NX = 2：NX；

GNSS_For_PX = 3：PX。

GNSSType_TypeDef GNSSType GNSS接收机类型。

None_GPS = 0：无GPS接收机；

GNSS_GPS = 1：标准GPS；

GNSS_GPS_Pro = 2：高性能GPS。

OCXOType_TypeDef OCXOType GNSS上的OCXO类型。

None_OCXO = 0：无OCXO；

GNSS_OCXO = 1：GNSS上的普通OCXO；

GNSS_DOCXO = 2：GNSS上的可驯服OCXO。

API 编程指南 35

uint8_t InternalOCXO 设备内部参考时钟是否是恒温晶振。

uint8_t SignalSourceEn 设备是否支持 信号源 功能。

uint8_t ADC_VariableRateEn 设备是否支持 ADC 可变采样率。

uint8_t IM3_filter 补充中频滤波器（IM3增强）。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface =USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

HardWareState_TypeDef HardWareState;

Status = Device_GetHardwareState (&Device, & HardWareState);

Status = Device_Close(&Device);

8.9 Device_QueryDeviceInfoWithBus

int Device_QueryDeviceInfoWithBus (int DeviceNum, const BootProfile_TypeDef* BootProfile, Bo

otInfo_TypeDef* BootInfo)

功能描述

通过设备号查询设备信息。

兼容性 0.55.0及之后版本支持

参数说明

int DeviceNum 指定设备号，当主机连接有多台设备时，可通过此设备号来选择相应的

设备，设备号从0开始累加。

const BootProfile_TypeDef*

BootProfile

设置启动配置。

请参考Device_Open()函数同名结构体参数详细定义。

BootInfo_TypeDef* BootInfo 返回启动配置。

请参考Device_Open()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 调用此函数要保证设备处于未打开状态，即需要在Device_Open前调用

此函数。

API 编程指南 36

示例

int Status = -1; int DeviceNum = 0;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface =USB;

BootInfo_TypeDef BootInfo;

Status = Device_QueryDeviceInfoWithBus (DeviceNum, &BootProfile, &BootInfo);

8.10 Device_SetFreqScan

int Device_SetFreqScan (void** Device, double StartFreq_Hz, double StopFreq_Hz, uint16_t Swee

pPts)

功能描述

配置中心频率扫描参数。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

double StartFreq_Hz 起始频率，单位Hz。

double StopFreq_Hz 终止频率，单位Hz。

uint16_t SweepPts 需要扫描的频点数。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

double StartFreq_Hz = 1e9;

double StopFreq_Hz = 2e9;

uint16_t SweepPts = 5;

Status = Device_SetFreqScan(&Device, StartFreq_Hz, StopFreq_Hz, SweepPts);

Status = Device_Close(&Device);

API 编程指南 37

9 系统 Device 与 GNSS 相关函数

9.1 Device_SetGNSSAntennaState

int Device_SetGNSSAntennaState(void** Device, const GNSSAntennaState_TypeDef GNSSAntenn

aState)

功能描述

在使用GNSS功能时，调用此函数可设置GNSS天线状态。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const GNSSAntennaState_TypeD

ef GNSSAntennaState

设置GNSS天线状态：

请参考Device_GetGNSSAntennaState ()函数同名枚举参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例 请参考Device_GetGNSSAntennaState()函数相关示例。

9.2 Device_GetGNSSAntennaState

int Device_GetGNSSAntennaState(void** Device, GNSSAntennaState_TypeDef* GNSSAntennaStat

e)

功能描述

在使用GNSS功能时，调用此函数可以以非实时的方式获取GNSS天线状态（需要选件支持），即不打断数

据获取，但信息只在获取数据包后更新。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

GNSSAntennaState_TypeDef GNS

SAntennaState

设置GNSS天线状态：

GNSS_AntennaExternal：外部天线；

GNSS_AntennaInternal：内部天线。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

API 编程指南 38

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

GNSSAntennaState_TypeDef GNSSAntennaState = GNSS_AntennaExternal;

Status = Device_SetGNSSAntennaState(&Device, GNSSAntennaState);

Status = Device_GetGNSSAntennaState(&Device, &GNSSAntennaState);

Status = Device_Close(&Device);

9.3 Device_GetGNSSAntennaState_Realtime

int Device_GetGNSSAntennaState_Realtime(void** Device, GNSSAntennaState_TypeDef* GNSSA

ntennaState)

功能描述

在使用GNSS功能时，调用此函数可以以实时的方式获取GNSS天线状态（需要选件支持），但实时方式短

时间内会占用数据通道。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

GNSSAntennaState_TypeDef

GNSSAntennaState

设置GNSS天线状态：

请参考Device_GetGNSSAntennaState ()函数同名枚举参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface =USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

GNSSAntennaState_TypeDef GNSSAntennaState = GNSS_AntennaExternal;

Status = Device_SetGNSSAntennaState (&Device, GNSSAntennaState);

Status = Device_GetGNSSAntennaState_Realtime (&Device, &GNSSAntennaState);

API 编程指南 39

Status = Device_Close(&Device);

9.4 Device_GetGNSSAltitude

int Device_GetGNSSAltitude(void** Device, int16_t* Altitude)

功能描述

在使用GNSS功能时，调用此函数可以以非实时的方式获取GNSS天线所处位置的海拔信息。（需要选件支

持），即不打断数据获取，但信息只在获取数据包后更新。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

int16_t* Altitude 返回GNSS所处位置的海拔。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0;void* Device = NULL; int16_t Altitude = 0;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface =USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

Status = Device_GetGNSSAltitude (&Device, &Altitude);

Status = Device_Close(&Device);

9.5 Device_AnysisGNSSTime

int Device_AnysisGNSSTime(double ABSTimestamp, int16_t* hour, int16_t* minute, int16_t* seco

nd, int16_t* Year, int16_t* month, int16_t* day)

功能描述

调用此函数可以解析GNSS时间日期信息。（需要选件支持）

兼容性 0.55.0及之后版本支持

参数说明

double ABSTimestamp 返回当前数据包对应的绝对时间戳。

int16_t* hour 返回GNSS时间日期信息中的时。

API 编程指南 40

int16_t* minute 返回GNSS时间日期信息中的分。

int16_t* second 返回GNSS时间日期信息中的秒。

int16_t* Year 返回GNSS时间日期信息中的年。

int16_t* month 返回GNSS时间日期信息中的月。

int16_t* day 返回GNSS时间日期信息中的日。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface =USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

double ABSTimestamp = 0;int16_t hour = 0, minute = 0, second = 0, Year = 0, month = 0, day = 0;

Status = Device_AnysisGNSSTime (ABSTimestamp,&hour,&minute, &second, &Year, &month, &day);

Status = Device_Close(&Device);

9.6 Device_SetDOCXOWorkMode

int Device_SetDOCXOWorkMode(void** Device, const DOCXOWorkMode_TypeDef DOCXOWorkM

ode)

功能描述

在使用GNSS功能时，调用此函数可以设置DOCXO工作状态。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const DOCXOWorkMode_TypeDe

f DOCXOWorkMode

设置DOCXO天线状态：

DOCXO_LockMode：驯服模式；

DOCXO_HoldMode：跟踪模式。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例 请参考Device_GetDOCXOWorkMode_Realtime函数相关示例。

API 编程指南 41

9.7 Device_GetDOCXOWorkMode

int Device_GetDOCXOWorkMode(void** Device, const DOCXOWorkMode_TypeDef* DOCXOWork

Mode)

功能描述

在使用GNSS功能时，调用此函数可以以非实时方式获取GNSS中DOCXO工作状态（需要选件支持），即不

打断数据获取，但信息只在获取数据包后更新。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const DOCXOWorkMode_TypeDe

f DOCXOWorkMode

设置DOCXO天线状态：

请参考Device_SetDOCXOWorkMode ()函数同名枚举参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

DOCXOWorkMode_TypeDef DOCXOWorkMode = DOCXO_LockMode;

Status = Device_SetDOCXOWorkMode(&Device, DOCXOWorkMode);

Status = Device_GetDOCXOWorkMode(&Device, &DOCXOWorkMode);

Status = Device_Close(&Device);

9.8 Device_GetDOCXOWorkMode_Realtime

int Device_GetDOCXOWorkMode_Realtime(void** Device,DOCXOWorkMode_TypeDef* DOCXO

WorkMode)

功能描述

在使用GNSS功能时，调用此函数可以以实时的方式获取GNSS中DOCXO工作状态（需要选件支持），但实

时方式短时间内会占用数据通道。

API 编程指南 42

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

DOCXOWorkMode_TypeDef*

DOCXOWorkMode

设置DOCXO天线状态：

请参考Device_SetDOCXOWorkMode ()函数同名枚举参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

DOCXOWorkMode_TypeDef DOCXOWorkMode = DOCXO_LockMode;

Status = Device_SetDOCXOWorkMode(&Device, DOCXOWorkMode);

Status = Device_GetDOCXOWorkMode_Realtime(&Device, &DOCXOWorkMode);

Status = Device_Close(&Device);

9.9 Device_GetGNSSInfo

int Device_GetGNSSInfo(void** Device, GNSSInfo_TypeDef* GNSSInfo)

功能描述

在使用GNSS功能时，调用此函数可以以非实时的方式获取GNSS设备状态（需要选件支持）。非实时方式

不打断数据获取，但信息只在获取数据包后更新。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

GNSSInfo_TypeDef* GNSSInfo GNSS获取设备信息。

GNSSInfo_TypeDef 结构体定义

float latitude 返回GNSS天线的经度。

Float longitude 返回GNSS天线的纬度。

int16_t altitude 返回GNSS天线的海拔。

uint8_t SatsNum 返回GNSS天线当前使用卫星数量。

API 编程指南 43

uint8_t GNSS_LockState 返回GPS锁定状态。

uint8_t DOCXO_LockState 返回GDOCXO锁定状态。

DOCXOWorkMode_TypeDef

DOCXO_WorkMode

返回DOCXO工作状态。

请参考Device_SetDOCXOWorkMode ()函数同名参数详细定义。

GNSSAntennaState_TypeDef

GNSSAntennaState

返回天线状态。

请参考Device_GetGNSSAntennaState ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef *BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface =USB;

BootInfo_TypeDef *BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

GNSSInfo_TypeDef GNSSInfo;

Status = Device_ GetGNSSInfo (&Device, & GNSSInfo);

Status = Device_Close(&Device);

9.10 Device_GetGNSSInfo_Realtime

int Device_GetGNSSInfo_Realtime(void** Device, GNSSInfo_TypeDef* GNSSInfo)

功能描述

在使用GNSS功能时，调用此函数可以以实时的方式获取GNSS设备状态（需要选件支持）。实时方式实时

获取，但短时间内会占用数据通道。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

GNSSInfo_TypeDef* GNSSInfo GNSS获取设备信息。

请参考Device_GetGNSSInfo ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

API 编程指南 44

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

GNSSInfo_TypeDef GNSSInfo;

Status = Device_GetGNSSInfo_Realtime(&Device, &GNSSInfo);

Status = Device_Close(&Device);

9.11 Device_GetGNSS_SatDate

int Device_GetGNSS_SatDate (void** Device, GNSS_SatDate_TypeDef* GNSS_SatDate)

功能描述

获取GNSS信噪比（需要选件支持）），非实时方式，不打断数据获取，但信息只在获取数据包后更新。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

GNSS_SatDate_TypeDef* GNSS_

SatDate

返回GNSS 信噪比信息。

GNSS_SatDate_TypeDef 结构体定义

uint8_t SatsNum_All 当前范围可视卫星。

uint8_t SatsNum_Use 用于定位的卫星数量。

GNSS_SNR_TypeDef

GNSS_SNR_UsePos

用于定位的卫星信噪比信息。

Max_SatxC_No：最大信噪比；

Min_SatxC_No：最小信噪比；

Avg_SatxC_No：平均信噪比。

GNSS_SNR_TypeDef

GNSS_SNR_NotUsePos

在视野内，但未用于定位的卫星信噪比信息。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

注意：仅在GNSS锁定后，获取的信噪比和卫星数量才是有效值，默认是

0。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

API 编程指南 45

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

GNSS_SatDate_TypeDef GNSS_SatDate;

Status = Device_GetGNSS_SatDate(&Device, &GNSS_SatDate);

Status = Device_Close(&Device);

9.12 Device_GetGNSS_SatDate_Realtime

int Device_GetGNSS_SatDate_Realtime (void** Device, GNSS_SatDate_TypeDef* GNSS_SatDate)

功能描述

获取GNSS信噪比（需要选件支持），实时获取，短时间内会占用数据通道。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

GNSS_SatDate_TypeDef* GNSS_

SatDate

返回GNSS 信噪比信息。

请参考Device_GetGNSS_SatDate函数同名结构体参数详细定义。

注意：仅在GNSS锁定后，获取的信噪比和卫星数量才是有效值，默认值

是0。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在Device_Open后调用此函数。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

GNSS_SatDate_TypeDef GNSS_SatDate;

Status = Device_GetGNSS_SatDate_Realtime(&Device, &GNSS_SatDate);

Status = Device_Close(&Device);

API 编程指南 46

10 标准频谱分析 SWP 主要函数

10.1 SWP_ProfileDeInit

int SWP_ProfileDeInit(void** Device, SWP_Profile_TypeDef* UserProfile_O)

功能描述

初始化配置SWP模式配置参数集合（SWP_Profile_TypeDef）。SWP_Profile_TypeDef定义了设备在SWP模式

下的频率、参考电平、分辨率带宽等所有参数。

兼容性 0.55.0 及之后版本支持

参数说明

void** Device 设备句柄。

SWP_Profile_TypeDef* UserProfil

e_O

输出默认的配置参数集合。

SWP_Profile_TypeDef 详细定义

double StartFreq_Hz 起始频率，单位Hz。

double StopFreq_Hz 终止频率，单位Hz。

double CenterFreq_Hz 中心频率，单位Hz。

double Span_Hz 频率扫宽，单位Hz。

double RefLevel_dBm 参考电平，单位dBm。

double RBW_Hz 分辨率带宽，单位Hz。

double VBW_Hz 视频带宽，单位Hz。

double SweepTime 当扫描时间模式指定为Manual时，该参数为绝对时间；当指定为*N时，

该参数为扫描时间倍率。

SWP_FreqAssignment_TypeDef

FreqAssignment

设置频率的指定方式，选择以StartStop或CenterSpan设定频率。

StartStop：以起始频率、终止频率指定扫描范围；

CenterSpan：以中心频率、扫宽指定扫描范围。

Window_TypeDef Window 指定FFT分析所使用的窗函数：

FlatTop：具有良好的幅度准确度；

Blackman_Nuttall：具有良好的频率分辨力；

LowSideLobe：具有良好的抑制频谱泄漏能力。

RBWMode_TypeDef RBWMode 设置RBW更新方式：

RBW_Manual: 手动输入RBW；

RBW_Auto: 自动随SPAN更新RBW；

API 编程指南 47

RBW_OneThousandthSpan：强制 RBW = 0.001 * SPAN；

RBW_OnePercentSpan：强制 RBW = 0.01*SPAN。

VBWMode_TypeDef VBWMode 设置VBW更新方式:

VBW_Manual: 手动输入VBW；

VBW_EqualToRBW: 强制 VBW = RBW；

VBW_TenPercentRBW: 强制 VBW = 0.1 * RBW；

VBW_OnePercentRBW: 强制 VBW = 0.01 * RBW；

VBW_TenTimesRBW: 强制 VBW = 10 * RBW，完全旁路VBW滤波器。

SweepTimeMode_TypeDef

 SweepTimeMode

扫描时间模式：

SWTMode_minSWT：以最短扫描时间进行扫描；

SWTMode_minSWTx2：以近似2倍最短扫描时间进行扫描；

SWTMode_minSWTx4：以近似4倍最短扫描时间进行扫描；

SWTMode_minSWTx10：以近似10倍最短扫描时间进行扫描；

SWTMode_minSWTx20：以近似20倍最短扫描时间进行扫描；

SWTMode_minSWTx50：以近似50倍最短扫描时间进行扫描；

SWTMode_minSWTxN：以近似N倍最短扫描时间进行扫描，N等于

SweepTimeMultiple；

SWTMode_Manual：以近似指定的扫描时间进行扫描，扫描时间等于

SweepTime；

SWTMode_minSMPxN：以近似N倍最短采样时间进行单个频点的采样，

N等于SampleTimeMultiple。

Detector_TypeDef Detector 设置检波器：

Detector_Sample：每个频点的功率谱间不进行帧间检波；

 Detector_PosPeak：每个频点的功率谱间进行帧检波，最终输出一帧，

帧与帧取MaxHold；

Detector_Average：每个频点的功率谱间进行帧检波，最终输出一帧，

帧与帧取平均；

Detector_NegPeak：每个频点的功率谱间进行帧检波，最终输出一帧，

帧与帧取MinHold；

Detector_MaxPower：在FFT前，每个频点都进行长时间的采样，从中选

取功率最大的帧数据进行FFT，用于捕获脉冲等瞬时信号（仅SWP模式可

用）；

Detector_RawFrames：每个频点均进行多次采样，多次FFT分析，并逐

帧输出功率谱（仅SWP模式可用）；

API 编程指南 48

Detector_RMS：每个频点的功率谱间进行帧检波，最终输出一帧，帧与

帧取RMS。

TraceFormat_TypeDef

TraceFormat

设置迹线格式：

TraceFormat_Standard：频率等间隔；

TraceFormat_PrecisFrq：频率准确。

TraceDetectMode_TypeDef

TraceDetectMode

设置迹线检波模式（频率轴）：

TraceDetectMode_Auto：自动选择迹线检波模式；

TraceDetectMode_Manua：指定迹线检波模式。

TraceDetector_TypeDef

 TraceDetector

设置迹线检波器类型：

TraceDetector_AutoSample：自动取样检波；

TraceDetector_Sample：取样检波；

TraceDetector_PosPeak：正峰值检波；

TraceDetector_NegPeak：负峰值检波；

TraceDetector_RMS：均方根检波；

TraceDetector_Bypass：不执行检波；

TraceDetector_AutoPeak：自动峰值检波。

uint32_t TracePoints 设置期望的迹线点数，系统会根据设置的扫描范围和RBW进行自动调

整，并返回实际可用且最接近的迹线点数。

TracePointsStrategy_TypeDef

TracePointsStrategy

设置迹线点数的设置策略：

SweepSpeedPreferred：优先保证扫描速度最快，尽量靠近设置的目标迹

线点数；

PointsAccuracyPreferred：优先保证实际迹线点数接近设置的目标迹线点

数；

BinSizeAssigned：优先保证按照设定的迹线点数来生成迹线。

TraceAlign_TypeDef TraceAlign 设置迹线对齐的方式：

NativeAlign：自然对齐；

AlignToStart：对齐至起始频率。

FFTExecutionStrategy_TypeDef

FFTExecutionStrategy

设置FFT执行策略：

Auto：根据设置自动选择使用CPU还是FPGA进行FFT计算；

Auto_CPUPreferred：根据设置自动选择使用CPU还是FPGA进行FFT计

算，CPU优先；

Auto_FPGAPreferred：根据设置自动选择使用CPU还是FPGA进行FFT计

算，FPGA优先；

API 编程指南 49

CPUOnly_LowResOcc：强制使用CPU计算，低资源占用，最大FFT点数

256K；

CPUOnly_MediumResOcc：强制使用CPU计算，中资源占用，最大FFT点

数1M；

CPUOnly_HighResOcc：强制使用CPU计算，高资源占用，最大FFT点数

4M；

FPGAOnly：强制使用FPGA计算。

RxPort_TypeDef RxPort 设置信号接收端口：（仅M60、M80、N60、N45支持）

ExternalPort：接收机接收来自外部输入端口输入的数据；

InternalPort：接收机接收来自内部的辅助信号源的射频信号。

SpurRejection_TypeDef

SpurRejection

设置杂散抑制：

Bypass：不进行杂散抑制；

Standard：中级杂散抑制；

Enhanced：高级杂散抑制；

杂散抑制等级越高，扫描速率越慢。

ReferenceClockSource_TypeDef

ReferenceClockSource

设置参考时钟源：

ReferenceClockSource_Internal：内部参考时钟（默认10MHz）；

ReferenceClockSource_External：外部参考时钟（默认10MHz），当外部

参考无法锁定时将自动切换为内部参考；

ReferenceClockSource_Internal_Premium：内部时钟源 -高品质，选择

DOCXO或OCXO；

ReferenceClockSource_External_Forced：强制使用外部参考时钟，即使

无法锁定也不会切换至内部参考。

double ReferenceClockFrequency 设置参考时钟频率 Hz，可用手动对系统时钟准确度进行修正。

uint8_t EnableReferenceClockOu

t

设置使能参考时钟输出。（仅E90、E200、N400支持）

SWP_TriggerSource_TypeDef

TriggerSource

设置接收机的扫频输入触发源：

InternalFreeRun：内部触发自由运行；

ExternalPerHop：外部触发，每一次触发都跳一个频点；

ExternalPerSweep：外部触发，每一次触发都刷新一条迹线。

TriggerEdge_TypeDef

TriggerEdge

设置输入触发边沿：

RisingEdge：由上升沿触发；

FallingEdge：由下降沿触发；

DoubleEdge：由双边沿触发。

API 编程指南 50

TriggerOutMode_TypeDef

TriggerOutMode

设置触发输出的模式：

None：无触发输出；

PerHop：随每帧完成时输出；

PerSweep：随每次扫描完成时输出；

PerProfile：随每次配置切换输出。

TriggerOutPulsePolarity_TypeDef

 TriggerOutPulsePolarity

设置触发输出的脉冲极性：

Positive：正脉冲；

Negative：负脉冲。

uint32_t PowerBalance 设置SWP模式下的动态功耗控制。典型范围为0~5000，增大该值可降低

功耗但会降低扫描速度。

GainStrategy_TypeDef

GainStrategy

设置增益策略：

LowNoisePreferred：侧重低噪声；

HighLinearityPreferred：侧重高线性度。

PreamplifierState_TypeDef

Preamplifier

设置前置放大器动作：

AutoOn：自动使能前置放大器；

ForcedOff：强制保持前置放大器关闭。

uint8_t AnalogIFBWGrade 设置中频带宽档位。

uint8_t IFGainGrade 设置中频增益档位。

int8_t Atten 设置衰减dB,设定频谱仪通道衰减量，默认-1（自动）。当该值不等于-1

（自动）时，其优先于RefLevel_dBm。

SWP_TraceType_TypeDef

TraceType

设置输出迹线类型：

ClearWrite：输出正常迹线；

MaxHold：输出经过最大值保持的迹线；

MinHold： 输出经过最小值保持的迹线；

ClearWriteWithIQ：同时输出当前频点的时域数据与频域数据。

LOOptimization_TypeDef

LOOptimization

设置本振优化：

LOOpt_Auto：本振优化，自动；

LOOpt_Speed：本振优化，高扫速；

LOOpt_Spur：本振优化，低杂散；

LOOpt_PhaseNoise：本振优化，低相噪。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open后调用。

示例 请参考SWP_GetPartialSweep()函数相关示例。

API 编程指南 51

10.2 SWP_Configuration

int SWP_Configuration(void** Device, const SWP_Profile_TypeDef* ProfileIn, SWP_Profile_TypeD

ef* ProfileOut, SWP_TraceInfo_TypeDef* TraceInfo)

功能描述

将频谱仪设备配置成标准的频谱扫描模式（SWPMode）并配置SWP模式的相关参数。SWP模式下的频率、

参考电平、分辨率带宽等参数统一封装在SWP_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const SWP_Profile_TypeDef*

SWP_ProfileIn

配置集输入。

请参考 SWP_ProfileDeInit ()函数同名结构体参数详细定义。

SWP_Profile_TypeDef*

SWP_ProfileOut

配置集输出。

请参考 SWP_ProfileDeInit ()函数同名结构体参数详细定义。

SWP_TraceInfo_TypeDef*

TraceInfo

返回频谱迹线的相关信息。

SWP_TraceInfo_TypeDef 详细定义

int FullsweepTracePoints 完整迹线的点数。

int PartialsweepTracePoints 每个频点的迹线点数，即每次GetPart的点数。

int TotalHops 完整迹线的频点数，即一条完整迹线需要GetPart的次数。

uint32_t UserStartIndex 迹线数组中与用户指定StartFreq_Hz对应的数组索引，即HopIndex = 0

时，Freq[UserStartIndex]是与SWPProfile.StartFreq_Hz最为近的频率点

uint32_t UserStopIndex 迹线数组中与用户指定StopFreq_Hz对应的数组索引，即HopIndex =

TotalHops - 1时，Freq[UserStopIndex]是与SWPProfile.StopFreq_Hz最为近

的频率点。

double TraceBinBW_Hz 迹线两点间的频率间隔。

double StartFreq_Hz 迹线第一个频点的频率。

double AnalysisBW_Hz 每个频点对应的分析带宽。

int TraceDetectRatio 视频检波的检波比。

int DecimateFactor 时域数据的抽取倍数。

float FrameTimeMultiple 帧分析时间倍率，设备在单一频点上的分析时间 = 默认分析时间（系统

自行设定） * 帧时间倍率。提高帧时间倍率将增加设备的最小扫描时

间，但不严格线性。

API 编程指南 52

double FrameTime 帧扫描时间：用于进行单帧FFT分析的信号持续时间（单位为秒）

double EstimateMinSweepTime 当前配置下，所能设定的最小扫描时间（单位为秒，结果主要受Span、

RBW、VBW、帧扫描时间等因素影响）。

DataFormat_TypeDef

DataFormat

时域数据格式。

uint64_t SamplePoints 时域数据采样长度。

uint32_t GainParameter 增益相关参数，包括 Space(31~24Bit)、PreAmplifierState(23~16Bit)、

StartRFBand(15~8Bit)、StopRFBand(7~0Bit)。

DSPPlatform_Typedef

DSPPlatform

当前配置所使用的DSP运算平台。

CPU_DSP：在CPU进行计算；

FPGA_DSP：在FPGA进行计算。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在SWP_ProfileDeInit之后进行调用。

示例 请参考SWP_GetPartialSweep()函数相关示例。

10.3 SWP_AutoSet

int SWP_AutoSet(void** Device, SWPApplication_TypeDef Application, const SWP_Profile_TypeD

ef* ProfileIn, SWP_Profile_TypeDef* ProfileOut, SWP_TraceInfo_TypeDef* TraceInfo, uint8_t ifDo

Config)

功能描述

将频谱仪设备的频谱扫描模式（SWPMode）根据应用目标给出推荐设备配置。SWP模式下的频率、参考

电平、分辨率带宽等参数统一封装在SWP_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

SWPApplication_TypeDef

Application

在SWP模式，根据应用目标给出推荐设备配置：

SWPNoiseMeas：显示平均噪声电平测量；

SWPChannelPowerMeas：信道功率测量；

SWPOBWMeas：占用带宽测量；

SWPACPRMeas：邻道功率比测量；

SWPIM3Meas：IP3/IM3测量。

const SWP_Profile_TypeDef*

SWP_ProfileIn

配置集输入。

API 编程指南 53

SWP_Profile_TypeDef*

SWP_ProfileOut

配置集输出。

SWP_TraceInfo_TypeDef* TraceIn

fo

返回频谱迹线的相关信息。

uint8_t ifDoConfig 返回下发成功与否结果

SWP_Profile_TypeDef 详细定义 请参考 SWP_ProfileDeInit ()函数同名结构体参数详细定义。

SWP_TraceInfo_TypeDef

详细定义

请参考 SWP_Configuration ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 当ifDoConfig值为0时，需要在SWP_Configuration之前调用；

当ifDoConfig值为1时，函数内部会自己调用SWP_Configuration函数，因

此不需要额外调用SWP_Configuration

示例：（ifDoConfig值为1）

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn, ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

uint8_t ifDoConfig=1;

SWPApplication_TypeDef Application;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_AutoSet (&Device, Application ,&ProfileIn, &ProfileOut, &TraceInfo, ifDoConfig);

Status = Device_Close(&Device);

10.4 SWP_GetPartialSweep

int SWP_GetPartialSweep(void** Device, double Freq_Hz[], float PowerSpec_dBm[], int* HopInde

x, int* FrameIndex, MeasAuxInfo_TypeDef* MeasAuxInfo)

功能描述

可获取SWP模式下在每个跳频点上获取的频谱结果，同时返回跳频频点序号、帧序号和测量数据的辅助信

息，以便用户自己将多次的扫描的结果拼接成整个频谱曲线，并返回函数状态。

兼容性 0.55.0及之后版本支持

API 编程指南 54

参数说明

void** Device 设备句柄。

double Freq_Hz[] 返回的频率数组。数组大小等于TraceInfo.PartialSweepTracePoints。

float PowerSpec_dBm[] 返回的幅度数组。数组大小等于TraceInfo.PartialSweepTracePoints。

int* HopIndex 返回数据的跳频频点序号。

int* FrameIndex 返回数据的帧序号。

MeasAuxInfo_TypeDef*

MeasAuxInfo

返回数据的辅助信息。

MeasAuxInfo_TypeDef 详细定义

uint32_t MaxIndex 功率最大值在数据包中的索引。

float MaxPower_dBm 数据包中的功率最大值。

int16_t Temperature 设备温度，摄氏度 = 0.01 * Temperature。

double SysTimeStamp 系统时间戳，单位s，设备内定时器提供。

double AbsoluteTimeStamp 绝对时间戳。系统内GNSS提供。

float Latitude 纬度坐标,北纬为正数，南纬为负数，以此区分南北纬。

float Longitude 经度坐标,东经为正数，西经为负数，以此区分东西经。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在SWP_Configuration之后进行调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DevNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef SWP_ProfileIn,SWP_ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

SWP_ProfileDeInit(&Device, &SWP_ProfileIn);

SWP_ProfileIn.StartFreq_Hz = 9e3;

SWP_ProfileIn.StopFreq_Hz = 6.35e9;

SWP_ProfileIn.RBWMode = RBW_Manual;

SWP_ProfileIn.RBW_Hz = 200e3;

Status = SWP_Configuration(&Device, &SWP_ProfileIn, &SWP_ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

API 编程指南 55

int HopIndex = 0, FrameIndex = 0;

MeasAuxInfo_TypeDef MeasAuxInfo;

for (int i = 0; i < TraceInfo.TotalHops; i++) {

Status = SWP_GetPartialSweep(&Device, Frequency.data() + i * TraceInfo.PartialsweepTracePoints, PowerSpec_

dBm.data() + i * TraceInfo.PartialsweepTracePoints, &HopIndex, &FrameIndex, &MeasAuxInfo);

}

Device_Close(&Device);

10.5 SWP_GetFullSweep

int SWP_GetFullSweep(void** Device, double Freq_Hz[], float PowerSpec_dBm[], MeasAuxInfo_T

ypeDef* MeasAuxInfo)

功能描述

可获取SWP模式下一整条频谱结果和获取测量数据的辅助信息，并同时返回函数状态。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

double Freq_Hz[] 返回的频率数组。数组大小等于TraceInfo.FullSweepTracePoints。

float PowerSpec_dBm[] 返回的幅度数组。数组大小等于TraceInfo.FullSweepTracePoints。

MeasAuxInfo_TypeDef*

MeasAuxInfo

返回测量数据的辅助信息。

请参考 SWP_GetPartialSweep ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在SWP_Configuration之后进行调用。

示例

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn;

SWP_Profile_TypeDef ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

API 编程指南 56

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

Status = Device_Close(&Device);

API 编程指南 57

11 标准频谱分析 SWP 其他函数

11.1 SWP_GetPartialSweep_PM1

int SWP_GetPartialSweep_PM1(void** Device, SWPTrace_TypeDef* PartialTrace)

功能描述

SWP_GetPartialSweep的多态形式，在原函数基础上调整了返回数据的形式，加强了数据的封装性。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

SWPTrace_TypeDef* PartialTrace 返回包含配置、返回信息和暂存数据的顶层结构体。

SWPTrace_TypeDef 详细定义

double* Freq_Hz 暂存在Device指针中的Frequency数据的地址。

float* PowerSpec_dBm 暂存在Device指针中的PowerSpec_dBm数据的地址。

int HopIndex 数据的跳频频点索引，用于拼接频谱。

int FrameIndex 数据的帧索引，用于准正峰值检波等应用。

void* AlternIQStream 时域数据（交织IQ形式）的地址。

float ScaletoV 时域数据至电压绝对值（V）的系数。

MeasAuxInfo_TypeDef

MeasAuxInfo

返回测量数据的辅助信息。

请参考 SWP_GetPartialSweep ()函数同名结构体参数详细定义。

SWP_Profile_TypeDef

SWP_Profile

数据的配置信息。

请参考 SWP_ProfileDeInit ()函数同名结构体参数详细定义。

SWP_TraceInfo_TypeDef

SWP_TraceInfo

数据的迹线信息。

请参考 SWP_Configuration ()函数同名结构体参数详细定义。

DeviceInfo_TypeDef DeviceInfo 数据的设备信息。

请参考 Device_Open ()函数同名结构体参数详细定义。

DeviceState_TypeDef

DeviceState

数据对应的设备状态。

请参考 Device_QueryDeviceState ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在SWP_Configuration之后进行调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

API 编程指南 58

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn;

SWP_Profile_TypeDef ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

SWPTrace_TypeDef PartialTrace;

vector<double> Frequency(TraceInfo.PartialsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.PartialsweepTracePoints);

PartialTrace.Freq_Hz = Frequency.data();

PartialTrace.PowerSpec_dBm = PowerSpec_dBm.data();

Status = SWP_GetPartialSweep_PM1(&Device, &PartialTrace);

Status = Device_Close(&Device);

11.2 SWP_ResetTraceHold

void SWP_MaxHoldReset(void** Device)

功能描述

当迹线模式TraceType为 MaxHold或MinHold时，重置保持的迹线数据。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 无。

调用约束 仅在TraceType为 MaxHold或MinHold时生效。

示例

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn;

SWP_Profile_TypeDef ProfileOut;

API 编程指南 59

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.PartialsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.PartialsweepTracePoints);

int HopIndex = 0;int FrameIndex = 0;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetPartialSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &HopIndex,&FrameIndex,

&MeasAuxInfo);

SWP_ResetTraceHold(&Device);

Status = Device_Close(&Device);

API 编程指南 60

12 相位噪声测量模式 Phase Noise

12.1 PNM_ProfileDeInit

int PNM_ProfileDeInit(void** Device, PNM_Profile_TypeDef* PNM_Profile)

功能描述

提供相位噪声测量的默认配置参数。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

PNM_Profile_TypeDef*

PNM_Profile

相位噪声测量的配置结构体。

PNM_Profile_TypeDef 详细定义

double CenterFreq 中心频率。

float Threshold 载波判决门限。

double RBWRatio RBW比例（各段RBW/各段起始频率）。

double StartOffsetFreq 起始频偏。

double StopOffsetFreq 终止频偏。

uint32_t TraceAverage 迹线平滑次数。

返回值 0：无异常；非0：异常。

调用约束 在Device_Open之后进行调用。

示例 请参考PNM_Set_FrameDetRatio ()函数相关示例。

12.2 PNM_Configuration

int PNM_Configuration(void** Device, const PNM_Profile_TypeDef* PNM_Profile_in, PNM_Profil

e_TypeDef* PNM_Profile_out, PNM_MeasInfo_TypeDef* PNM_MeasInfo);

功能描述

配置相位噪声测量。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

const PNM_Profile_TypeDef*

PNM_Profile_in

相位噪声测量的配置结构体（输入）。

请参考PNM_ProfileDeInit()函数同名结构体参数详细定义。

API 编程指南 61

PNM_Profile_TypeDef*

PNM_Profile_out

相位噪声测量的配置结构体（返回）。

请参考PNM_ProfileDeInit()函数同名结构体参数详细定义。

PNM_MeasInfo_TypeDef*

PNM_MeasInfo

相位噪声测量的测量信息结构体。

PNM_MeasInfo_TypeDef 详细定义

uint32_t Segments 频率分段数（十倍频程划分）。

uint32_t TracePoints 迹线点数。

uint32_t PartialUpdateCounts 一次分析对应的迹线刷新次数（Get接口调用次数）。

uint32_t

FramesInSegment[PHASENOISE_

MAXFREQSEGMENT]

各分段的总帧数。

uint32_t

FrameDetRatioOfSegment[PHAS

ENOISE_MAXFREQSEGMENT]

各分段的帧检波比。

double

StartFreqOfSegment[PHASENOIS

E_MAXFREQSEGMENT]

各分段的起始频率。

double

StopFreqOfSegment[PHASENOIS

E_MAXFREQSEGMENT]

各分段的终止频率。

double

RBWOfSegment[PHASENOISE_M

AXFREQSEGMENT]

各分段的RBW。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open之后进行调用。

示例 请参考PNM_Set_FrameDetRatio ()函数相关示例。

12.3 PNM_StartMeasure

int PNM_StartMeasure(void** Device)

功能描述

开始一次相位噪声测量。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

API 编程指南 62

调用约束 在Device_Open之后进行调用。

示例 请参考PNM_Set_FrameDetRatio ()函数相关示例。

12.4 PNM_StopMeasure

int PNM_StopMeasure(void** Device)

功能描述

强制停止本次相位噪声测量。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在PNM_StartMeasure之后进行调用。

示例 请参考PNM_Set_FrameDetRatio ()函数相关示例。

12.5 PNM_GetPartialUpdatedFullTrace

int PNM_GetPartialUpdatedFullTrace(void** Device, double* CarrierFreq, float* CarrierPower, do

uble Freq[], float PhaseNoise[], uint32_t FrameUpdateCounts[], MeasAuxInfo_TypeDef* MeasAux

Info, float* RefLevel)

功能描述

获取相位噪声测量结果迹线。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

double* CarrierFreq 载波频率。

float* CarrierPower 载波功率。

double Freq[] 迹线频率轴（以Hz为单位）。

float PhaseNoise[] 迹线功率轴（以dBc/Hz为单位）。

uint32_t FrameUpdateCounts[] 刷新计数器（索引0为最远端的分段，N为最近端的分段；元素为段的已

刷新帧数）。

MeasAuxInfo_TypeDef*

MeasAuxInfo

辅助测量信息结构体。

请参考SWP_GetPartialSweep()函数同名结构体参数详细定义。

float* RefLevel 返回当前测量对应的参考电平。

返回值 0：无异常；非0：异常，详见附录1。

API 编程指南 63

调用约束 在PNM_Configuration之后进行调用。

示例 请参考PNM_Set_FrameDetRatio ()函数相关示例。

12.6 PNM_AutoSearch

int PNM_AutoSearch(void** Device, double* CarrierFreq, uint8_t* Found)

功能描述

高级功能：通过全景扫描寻找功率超过载波门限的信号。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

double* CarrierFreq 载波频率。

uint8_t* Found 载波存在标志。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open之后进行调用。

示例 请参考PNM_Set_FrameDetRatio ()函数相关示例。

12.7 PNM_Preset_FrameDetRatio

int PNM_Preset_FrameDetRatio(void** Device, PNM_MeasInfo_TypeDef* MeasInfo)

功能描述

高级功能：复位各频率分段的帧检波比。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

PNM_MeasInfo_TypeDef*

MeasInfo

复位帧检波比后，更新相位噪声测量的测量信息结构体。

请参考PNM_Configuration()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在PNM_Configuration之后进行调用。

示例 请参考PNM_Set_FrameDetRatio ()函数相关示例。

API 编程指南 64

12.8 PNM_Set_FrameDetRatio

int PNM_Set_FrameDetRatio(void** Device, uint32_t FrameDetRatioOfSegment[], PNM_MeasInf

o_TypeDef* MeasInfo)

功能描述

高级功能：手动配置各频率分段的帧检波比。

兼容性 0.55.58及之后版本支持

参数说明

void** Device 设备句柄。

uint32_t

FrameDetRatioOfSegment[]

帧检波比的设定数组（数组长度为Segments；索引0为最远端的分段，N

为最近端的分段）。

PNM_MeasInfo_TypeDef*

MeasInfo

调整帧检波比后，更新相位噪声测量的测量信息结构体。

请参考PNM_Configuration()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在PNM_Configuration之后进行调用。

示例

int Status = 0;void* Device = NULL;int DeviceNum = 0;

BootProfile_TypeDef BootProfile;

BootInfo_TypeDef BootInfo;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

// 全频段寻载波（高级功能非必需）：可使用PNM_AutoSearch接口进行全景扫描，寻找超过载波判决门

限的信号

// double PeakFreq = 1.0;

// uint8_t Found = 0;

// Status = PNM_AutoSearch(&Device, &PeakFreq, &Found);

// 若寻到理想载波，可将该频率通过PNM_Configuration接口配置给设备进行分析。

PNM_Profile_TypeDef PNM_ProfileIn, PNM_ProfileOut;

PNM_MeasInfo_TypeDef PNM_MeasInfo;

PNM_ProfileDeInit(&Device, &PNM_ProfileIn);

PNM_ProfileIn.CenterFreq = 1e9;

PNM_ProfileIn.Threshold = -50.0;

PNM_ProfileIn.RBWRatio = 0.1;

PNM_ProfileIn.StartOffsetFreq = 100;

API 编程指南 65

PNM_ProfileIn.StopOffsetFreq = 1e6;

PNM_ProfileIn.TraceAverage = 1;

// 配置设备的相位噪声测量状态

Status = PNM_Configuration(&Device, &PNM_ProfileIn, &PNM_ProfileOut, &PNM_MeasInfo);

// 手动设定检波比（高级功能非必需）：可使用PNM_Set_FrameDetRatio接口手动调整各频率分段的帧检

波比

// PNM_MeasInfo.FrameDetRatioOfSegment[PNM_MeasInfo.Segments - 1] = 10;

// Status = PNM_Set_FrameDetRatio(&Device, PNM_MeasInfo.FrameDetRatioOfSegment, &PNM_MeasInfo);

// 复位帧检波比（高级功能非必需）：可使用PNM_Preset_FrameDetRatio接口将各段的帧检波比复位为默

认值

// PNM_Preset_FrameDetRatio(&Device, &PNM_MeasInfo);

vector<double> Freq(PNM_MeasInfo.TracePoints);

vector<float> PhaseNoise(PNM_MeasInfo.TracePoints);

double CarrierFreq;float CarrierPower;float RefLevel;

vector<uint32_t> FrameUpdateCounts(PNM_MeasInfo.Segments);

MeasAuxInfo_TypeDef MeasAuxInfo;

while(1)

{

PNM_StartMeasure(&Device); // 开始一次相位噪声测量

for (int i = 0; i < PNM_MeasInfo.PartialUpdateCounts; i++) // 获取一次相位噪声测量结果的迹线

{

Status = PNM_GetPartialUpdatedFullTrace(&Device, &CarrierFreq, &CarrierPower, Freq.data(),

PhaseNoise.data(), FrameUpdateCounts.data(), &MeasAuxInfo, &RefLevel);

if (Status == APIRETVAL_NoError)

{

}

else

{

switch (Status)

{

case APIRETVAL_WARNING_CarrierLoss :

{

cout << "未发现载波" << endl; //未在指定频点附近未找到功率高于载波判决门限的信号

break;

}

case APIRETVAL_WARNING_MeasUpdate :

{

API 编程指南 66

i = 0;

cout << "测量状态更新" << endl; // PNM特殊返回值：相位噪声测量过程中，DUT状态发生改变，导致测量

状态自动更新，需重新获取PartialUpdateCounts次数据

break;

}

default: cout << "请对应编程指南检查通用错误码" << endl;

}

}

}

cout << "wait";

}

PNM_StopMeasure(&Device); // 停止本次相位噪声测量

Device_Close(&Device);

API 编程指南 67

13 IQ 数据记录 IQS 主要函数

13.1 IQS_ProfileDeInit

int IQS_ProfileDeInit(void** Device, IQS_Profile_TypeDef* UserProfile_O)

功能描述

初始化配置 IQS模式的相关参数。 IQS模式下的中心频率、参考电平、抽取倍数等参数统一封装在

IQS_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

IQS_Profile_TypeDef

*UserProfile_O

IQS配置结构体指针，为输入/输出变量。

IQS_Profile_TypeDef 详细定义

double CenterFreq_Hz 设置中心频率。

double RefLevel_dBm 设置参考电平。

uint32_t DecimateFactor 设置时域数据的抽取倍数，有效分析带宽 = 原始分析带宽/抽取倍数。

RxPort_TypeDef RxPort 设置信号接收端口：

ExternalPort：接收机接收来自外部输入端口输入的数据；

InternalPort：接收机接收来自内部的辅助信号源的射频信号。

（仅M60、M80、N60、N45支持）

uint32_t BusTimeout_ms 设置数据传输超时时间（ms），如果设备在调用数据获取函数后于此时

间内未能成功获取数据则函数返回错误。

IQS_TriggerSource_TypeDef

TriggerSource

设置输入触发源：

External：外部触发，由连接至设备外触发输入端口的物理信号进行触

发；

Bus：总线触发。由函数（指令）的方式进行触发；

Level：电平触发。设备根据设定的电平门限对输入信号进行检测，当输

入超过门限值后自动发起触发；

Timer：定时器触发。使用设备内部定时器以设定的时间周期进行自动

触发；

TxSweep：由设备内部信号源扫描触发数据采集（需ASG选件）当选择

此触发源时，采集过程将由信号源扫描的输出触发信号进行触发；

API 编程指南 68

MultiDevSyncByExt：在外部触发信号到来时，多机做同步触发行为；

MultiDevSyncByGNSS1PPS：在GNSS-1PPS到来时，多机做同步触发行

为；

GNSS1PPS：使用系统内GNSS提供的1PPS进行触发（需GNSS模块选

件）。

TriggerEdge_TypeDef

TriggerEdge

设置输入触发边沿：

RisingEdge：上升沿触发；

FallingEdge：下降沿触发；

DoubleEdge：双边沿触发。

TriggerMode_TypeDef

TriggerMode

设置输入触发模式：

 FixedPoints：触发后，采集定点长度（TriggerLength）的数据；

Adaptive：触发后，持续采集数据，直到收到终止信号（外触发终止边

沿或总线触发终止指令）。

uint64_t TriggerLength 设置触发长度，即每次触发所采集的数据点数，当 TriggerMode =

FixedPoints 时生效。

double TriggerLevel_dBm 设置电平触发门限。当TriggerSource = Level时生效。

double TriggerLevel_SafeTime 设置电平触发防抖安全时间，单位为s。若触发信号无法在该时间内保

持有效电平触发将不被执行。当TriggerSource = Level时生效。

double TriggerDelay 设置触发延迟，单位为s。触发后，触发动作将在此延时之后执行。

double PreTriggerTime 设置预触发时间，单位为s。触发后，触发动作前该预触发时长内的数

据也将被包含在触发数据中。

TriggerTimerSync_TypeDef

TriggerTimerSync

设置触发定时器的同步：

NoneSync：定时器触发不与外触发同步；

SyncToExt_RisingEdge：定时器触发与外触发上升沿同步；

SyncToExt_FallingEdge：定时器触发与外触发下降沿同步；

SyncToExt_SingleRisingEdge：定时器触发与外触发上升沿单次同步（需

要调用指令函数，执行单次同步）；

SyncToExt_SingleFallingEdge：定时器触发与外触发下降沿单次同步（需

要调用指令函数，执行单次同步）；

SyncToGNSS1PPS_RisingEdge：定时器触发与GNSS-1PPS上升沿同步；

（需GNSS模块选件）

SyncToGNSS1PPS_FallingEdge：定时器触发与GNSS-1PPS下降沿同步；

（需GNSS模块选件）

API 编程指南 69

SyncToGNSS1PPS_SingleRisingEdge：定时器触发与GNSS-1PPS上升沿单次

同步（需要调用指令函数，执行单次同步，需GNSS模块选件）；

SyncToGNSS1PPS_SingleFallingEdge：定时器触发与GNSS-1PPS下降沿单

次同步（需要调用指令函数，执行单次同步，需GNSS模块选件）。

double TriggerTimer_Period 设置定时触发周期，单位秒。仅在 TriggerSource = Timer 时生效。

uint8_t EnableReTrigger 自动重触发，使能设备在初始触发源触发后，接续进行自发的定时再触

发。例如在每次外触发后，再以 1ms间隔自动触发 3次。仅在

TriggerMode = FixedPoint时生效。

double ReTrigger_Period 自动重触发，设置再触发的触发周期，单位s。

uint16_t ReTrigger_Count 自动重触发，设置每次触发后，再触发的执行次数。

DataFormat_TypeDef

DataFormat

设置IQ数据的输出数据格式：

Complex8bit：IQ两路数据为8位格式；

Complex16bit：IQ两路数据为16位格式；

Complex32bit：IQ两路数据为32位格式。

GainStrategy_TypeDef

GainStrategy

设置增益策略：

LowNoisePreferred：侧重低噪声；

HighLinearityPreferred：侧重高线性度。

PreamplifierState_TypeDef

Preamplifier

设置前置放大器动作：

AutoOn：自动使能前置放大器；

ForcedOff：强制保持前置放大器关闭。

uint8_t AnalogIFBWGrade 设置模拟中频带宽档位。

uint8_t IFGainGrade 设置中频增益档位。档位越高中频增益越高。

ReferenceClockSource_TypeDef

ReferenceClockSource

设置参考时钟源：

ReferenceClockSource_Internal：内部参考时钟（默认10MHz）；

ReferenceClockSource_External：外部参考时钟（默认10MHz），当外部

参考无法锁定时将自动切换为内部参考；

ReferenceClockSource_Internal_Premium：内部时钟源 -高品质，选择

DOCXO或OCXO；

ReferenceClockSource_External_Forced：强制使用外部参考时钟，即使

无法锁定也不会切换至内部参考。

double ReferenceClockFrequency 设置参考时钟频率 Hz。

uint8_t EnableReferenceClockOu

t

设置使能参考时钟输出。（仅E90、E200、N400支持）

API 编程指南 70

double NativeIQSampleRate_SPS 设置原生的IQ采样速率，设备可通过调整该参数对采样率进行调整；若

调整此参数后未生效，则表示此设备不支持调整设备采样率。

int8_t Atten 设置衰减dB，设定频谱仪通道衰减量，默认-1（自动）。当该值不等于

-1（自动）时，其优先于RefLevel_dBm。

DCCancelerMode_TypeDef

DCCancelerMode

设置直流抑制器模式：

DCCOff：直流抑制关闭；

DCCHighPassFilterMode：高通滤波器模式（更好的直流抑制效果，但会

抑制DC至100kHz范围内的信号分量）；

DCCManualOffsetMode：开启，手动偏置模式，该模式下需人工手动配

置DCCIOffse和DCCQOffset的偏置值，且抑制效果弱于高通滤波器模式，

但不会抑制直流上的信号分量；

DCCAutoOffsetMode：开启，自动偏置方式，该模式下自动配置

DCCIOffse和DCCQOffset的偏置值；

若设备在中心频率处出现直流分量，请开启此功能抑制直流分量，若未

出现直流分量，则无需设置此参数。

QDCMode_TypeDef

QDCMode

设置IQ幅相修正器模式：

QDCOff: 关闭QDC功能；

QDCManualMode：开启并使用手动模式；该模式下根据用户手动设置

的QDCIGain、QDCQGain、QDCPhaseComp进行配置；

QDCAutoMode：开启并使用自动 QDC模式。该模式会自动配置

QDCIGain、QDCQGain、QDCPhaseComp为默认值；

若开启QDC功能后，IQ数据的幅相特征未发生变化，则此设备不需开启

QDC功能。

float QDCIGain 设置归一化线性增益 I路，1.0 表示无增益，设置范围 0.8~1.2。

QDCMode = QDCManualMode时生效。

float QDCQGain 设置归一化线性增益 Q路，1.0 表示无增益，设置范围 0.8~1.2。

QDCMode = QDCManualMode时生效。

float QDCPhaseComp 设置相位补偿系数，设置范围 -0.2~+0.2。QDCMode = QDCManualMode

时生效。

int8_t DCCIOffset 设置I通道直流偏置，LSB。DCCancelerMode = DCCManualOffsetMode 时

生效。

int8_t DCCQOffset 设置Q通道直流偏置，LSB。DCCancelerMode = DCCManualOffsetMode 时

生效。

LOOptimization_TypeDef 设置本振优化：

API 编程指南 71

LOOptimization LOOpt_Auto：本振优化，自动；

LOOpt_Speed：本振优化，高扫速；

LOOpt_Spur：本振优化，低杂散；

LOOpt_PhaseNoise：本振优化，低相噪。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open后调用。

示例 请参考IQS_GetIQStream ()函数相关示例。

13.2 IQS_Configuration

int IQS_Configuration(void** Device, const IQS_Profile_TypeDef* ProfileIn, IQS_Profile_TypeDef*

 ProfileOut, IQS_StreamInfo_TypeDef* StreamInfo)

功能描述

将频谱仪设备配置成IQ时域数据流模式(IQS)。IQS模式下，本振信号固定，并接收以本振频率为中心一定

带宽的射频信号。同时在抽取倍数>2时，使用USB3.0及高速硬盘进行数据传输可实现连续时域记录功能。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const IQS_Profile_TypeDef*

IQS_ProfileIn

IQS配置结构体指针，为输入变量。

请参考 IQS_ProfileDeInit ()函数同名结构体参数详细定义。

IQS_Profile_TypeDef*

IQS_ProfileOut

IQS配置结构体指针，为输出变量。

请参考 IQS_ProfileDeInit ()函数同名结构体参数详细定义。

IQS_StreamInfo_TypeDef*

StreamInfo

IQS时域数据流模式下，IQ数据流的相关信息。

IQS_StreamInfo_TypeDef 详细定义

double Bandwidth 当前配置对应的接收机物理通道或数字信号处理的带宽。

double IQSampleRate 当前配置对应的IQ单路采样率，单位S/s（Sample/second）。

uint64_t PacketCount 当前配置对应的总数据包数，仅在FixedPoints模式下生效

uint64_t StreamSamples Fixedpoints模式下表示当前配置对应采样的总点数；Adaptive模式下没

有物理意义，值为0。

uint64_t StreamDataSize Fixedpoints模式下表示当前配置对应采样的总字节数；Adaptive模式下

没有物理意义，值为0。

API 编程指南 72

uint32_t PacketSamples 每次调用IQS_GetIQStream 获取到的数据包中采样点数 每个数据包中包

含的样点数。

uint32_t PacketDataSize 每次调用IQS_GetIQStream 所得到的有效数据字节数。

uint32_t GainParameter 增益相关参数，包括 Space(31~24Bit)、PreAmplifierState(23~16Bit)、

StartRFBand(15~8Bit)、StopRFBand(7~0Bit)。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_ProfileDeInit之后进行调用。

示例 请参考IQS_GetIQStream ()函数相关示例。

13.3 IQS_BusTriggerStart

int IQS_BusTriggerStart(void** Device)

功能描述

将发起总线触发。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_GetIQStream之前进行调用。

示例 请参考IQS_GetIQStream ()函数相关示例。

API 编程指南 73

13.4 IQS_BusTriggerStop

int IQS_BusTriggerStop(void** Device)

功能描述

将终止当前总线触发。当配置TriggerMode = FixedPoints时，总线触发在由IQS_BusTriggerStart函数发起并

达到指定触发长度后会自行终止，而无需调用该函数。

兼容性 0.55.0 及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非 0：异常，详见附录 1。

调用约束 需要在 IQS_GetIQStream 之后进行调用。

示例 请参考 IQS_GetIQStream ()函数相关示例。

13.5 IQS_GetIQStream

int IQS_GetIQStream(void** Device, void** AlternIQStream, float* ScaleToV, IQS_TriggerInfo_Typ

eDef* TriggerInfo, MeasAuxInfo_TypeDef* MeasAuxInfo)

功能描述

调用此函数获取IQS模式下的时域数据、测量信息与触发信息

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

void** AlternIQStream 时域数据（交织IQ形式）的地址。一个数据包为固定64968个字节。当

选择的IQ数据类型为int8_t时，I、Q两路分别为32484个点，每个点占1

个字节；当选择的IQ数据类型为int16_t时，I、Q两路分别为16242个

点，每个点占2个字节；当选择的IQ数据类型为int32_t时，I、Q两路分

别为8121个点，每个点占4个字节。IQ数据是按照IQIQ...的排列方式存

储。

float* ScaleToV 时域数据至电压绝对值（V）的系数。

IQS_TriggerInfo_TypeDef*

TriggerInfo

IQ数据流的触发相关信息。

MeasAuxInfo_TypeDef*

MeasAuxInfo

返回测量数据的辅助信息。

请参考 IQS_ProfileDeInit ()函数同名结构体参数详细定义。

API 编程指南 74

IQS_TriggerInfo_TypeDef 详细定义

uint64_t SysTimerCountOfFirstDa

taPoint

首个数据点对应的系统时间计数器值。

uint16_t InPacketTriggeredDataSi

ze

数据中有效触发数据的字节数。

uint16_t InPacketTriggerEdges 数据中所包含的边沿个数。

uint32_t StartDataIndexOfTrigger

Edges[25]

各触发边沿的数据起始位置。

uint64_t SysTimerCountOfEdges

[25]

各触发边沿的系统时间戳。

int8_t EdgeType[25] 各触发边沿的极性。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_Configuration之后进行调用。

示例

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn;

IQS_Profile_TypeDef ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

Status = IQS_BusTriggerStart(&Device);

void* AlternIQStream = NULL;float ScaleToV = 0;

IQS_TriggerInfo_TypeDef TriggerInfo;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = IQS_GetIQStream(&Device, &AlternIQStream, &ScaleToV, &TriggerInfo, &MeasAuxInfo);

Status = IQS_BusTriggerStop(&Device);

Status = Device_Close(&Device);

API 编程指南 75

14 IQ 数据记录 IQS 其他函数

14.1 IQS_MultiDevice_WaitExternalSync

int IQS_MultiDevice_WaitExternalSync(void** Device, const IQS_Profile_TypeDef* ProfileIn)

功能描述

调用该函数等待多机同步触发信号。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const IQS_Profile_TypeDef*

ProfileIn

IQS配置结构体指针，为输入变量。

请参考 IQS_ProfileDeInit ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需 要 在 IQS_ Configuration 之 后 进 行调 用 ，且 TriggerSource 选 择

MultiDevSyncByExt或MultiDevSyncByGNSS1PPS。

示例 请参考IQS_MultiDevice_Run ()函数相关示例。

14.2 IQS_MultiDevice_Run

int IQS_MultiDevice_Run(void** Device)

功能描述

调用此函数使能多机同步运行。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_MultiDevice_WaitExternalSync之后进行调用。

示例

API 编程指南 76

int Status = -1, Status0 = -1; int DeviceNum0 = 0; int DeviceNum1 = 0;

void* Device0 = NULL; void* Device1 = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device0, DeviceNum0, &BootProfile, &BootInfo);

Status0 = Device_Open(&Device1, DeviceNum1, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn0, ProfileIn1;

IQS_Profile_TypeDef ProfileOut0, ProfileOut1;

IQS_StreamInfo_TypeDef StreamInfo0, StreamInfo1;

Status = IQS_ProfileDeInit(&Device0, &ProfileIn0);

Status = IQS_ProfileDeInit(&Device1, &ProfileIn1);

ProfileIn0.TriggerSource = MultiDevSyncByExt;

ProfileIn1.TriggerSource = MultiDevSyncByExt;

Status = IQS_Configuration(&Device0, &ProfileIn0, &ProfileOut0, &StreamInfo0);

Status0 = IQS_Configuration(&Device1, &ProfileIn1, &ProfileOut1, &StreamInfo1);

Status0 = IQS_MultiDevice_WaitExternalSync(&Device0, &ProfileOut0);

Status0 = IQS_MultiDevice_Run(&Device0);

Status = IQS_MultiDevice_Run(&Device1);

Status = Device_Close(&Device0);

Status0 = Device_Close(&Device1);

14.3 IQS_SyncTimer

int IQS_SyncTimer (void** Device)

功能描述

调用此函数发起定时器-外触发同步。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_Configuration之后进行调用，且TriggerSource选择Timer。

示例

int Status = -1; int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

API 编程指南 77

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn,ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

ProfileIn.TriggerSource = Timer;

ProfileIn. TriggerTimerSync = SyncToExt_RisingEdge;

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

Status = IQS_SyncTimer (&Device);

Status = Device_Close(&Device);

14.4 IQS_GetIQStream_PM1

int IQS_GetIQStream_PM1(void** Device, IQStream_TypeDef* IQStream)

功能描述

获取IQS模式下的时域数据，时域数据格式为int8_t、int16_t和int32_t，根据用户需要自行选择数据格式。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

IQStream_TypeDef* IQStream IQ数据流，包括IQ数据及相关配置信息等。

IQStream_TypeDef 详细定义

void* AlternIQStream 返回时域IQ数据包。一整个数据包为固定64968个字节。当选择的IQ数

据类型为int8_t时，I、Q两路分别为32484个点，每个点占1个字节；当

选择的IQ数据类型为int16_t时，I、Q两路分别为16242个点，每个点占2

个字节；当选择的IQ数据类型为int32_t时，I、Q两路分别为8121个点，

每个点占4个字节。IQ数据是按照IQIQ...的排列方式存储。

float IQS_ScaleToV 时域数据至电压绝对值（V）的系数。

float MaxPower_dBm 数据中的功率最大值。

uint32_t MaxIndex 功率最大值在数据中的索引。

IQS_Profile_TypeDef

IQS_Profile

数据的配置信息。

请参考 IQS_ProfileDeInit ()函数同名结构体参数详细定义。

IQS_StreamInfo_TypeDef

StreamInfo

数据的格式信息。

请参考 IQS_Configuration ()函数同名结构体参数详细定义。

API 编程指南 78

IQS_TriggerInfo_TypeDef

TriggerInfo

数据的触发信息。

请参考 IQS_GetIQStream ()函数同名结构体参数详细定义。

DeviceInfo_TypeDef

DeviceInfo

数据的设备信息。

请参考 Device_Open ()函数同名结构体参数详细定义

DeviceState_TypeDef

DeviceState

数据的设备状态信息。

请参考 Device_QueryDeviceState ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_Configuration之后进行调用。

示例

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn,ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

IQStream_TypeDef IQStream;

Status = IQS_BusTriggerStart(&Device);

Status = IQS_GetIQStream_PM1(&Device, &IQStream);

Status = IQS_BusTriggerStop(&Device);

Status = Device_Close(&Device);

14.5 IQS_GetIQStream_PM2

int IQS_GetIQStream_PM2 (void**Device, IQStream_TypeDef* IQStream, MeasAuxInfo_TypeDef* Mea

sAuxInfo)

功能描述

获取IQS模式下的时域数据和测量辅助信息，其中时域数据格式为int8_t、int16_t和int32_t，根据用户需要

自行选择数据格式。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

IQStream_TypeDef* IQStream IQ数据流，包括IQ数据及相关配置信息等。

API 编程指南 79

请参考IQS_GetIQStream_PM1函数同名结构体参数详细定义。

MeasAuxInfo_TypeDef*

MeasAuxInfo

返回测量数据的辅助信息。

请参考SWP_GetPartialSweep()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_Configuration之后进行调用。

示例

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn, ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

IQStream_TypeDef IQStream;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = IQS_BusTriggerStart(&Device);

Status = IQS_GetIQStream_PM2(&Device, &IQStream, &MeasAuxInfo);

Status = IQS_BusTriggerStop(&Device);

Status = Device_Close(&Device);

14.6 IQS_GetIQStream_Data

int IQS_GetIQStream_Data(void** Device, int16_t IQ_data[])

功能描述

调用此函数获取数据类型为int16_t的IQ时域数据。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 此参数设备句柄。

int16_t IQ_data[] 用于接收单路数据16位的IQ数据数组。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在IQS_Configuration之后进行调用。

示例

API 编程指南 80

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn, ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

Status = IQS_BusTriggerStart(&Device);

vector<int16_t> IQ_Data(StreamInfo.StreamSamples); //创建 I 路数据数组。

Status = IQS_GetIQStream_Data(&Device, IQ_Data.data());

Status = Device_Close(&Device);

API 编程指南 81

15 检波分析 DET

DET为检波分析模式，对一定带宽内的信号进行功率检波，帮助用户观察信号的电平。

15.1 DET_ProfileDeInit

int DET_ProfileDeInit(void** Device, DET_Profile_TypeDef* UserProfile_O)

功能描述

初始化配置DET模式的相关参数。DET模式下的中心频率、参考电平、抽取倍数等参数统一封装在

DET_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

DET_Profile_TypeDef

*UserProfile_O

DET配置结构体指针，为输入/输出变量。

DET_Profile_TypeDef 详细定义 请参考IQS_ProfileDeInit()函数同名结构体参数详细定义。

double CenterFreq_Hz

double RefLevel_dBm

uint32_t DecimateFactor

RxPort_TypeDef RxPort

uint32_t BusTimeout_ms

DET_TriggerSource_TypeDef

TriggerSource

TriggerEdge_TypeDef TriggerEdge

TriggerMode_TypeDef

TriggerMode

uint64_t TriggerLength

TriggerOutMode_TypeDef

TriggerOutMode

TriggerOutPulsePolarity_TypeDef

 TriggerOutPulsePolarity

double TriggerLevel_dBm

double TriggerLevel_SafeTime

double TriggerDelay

double PreTriggerTime

API 编程指南 82

TriggerTimerSync_TypeDef

TriggerTimerSync

double TriggerTimer_Period

uint8_t EnableReTrigger

double ReTrigger_Period

uint16_t ReTrigger_Count

Detector_TypeDef Detector 设置检波器：

Detector_Sample：每个频点的功率谱间不进行帧间检波;

 Detector_PosPeak：每个频点的功率谱间进行帧检波，最终输出一帧，

帧与帧取MaxHold；

Detector_Average：每个频点的功率谱间进行帧检波，最终输出一帧，

帧与帧取平均；

Detector_NegPeak：每个频点的功率谱间进行帧检波，最终输出一帧，

帧与帧取MinHold；

Detector_RMS：每个频点的功率谱间进行帧检波，最终输出一帧，帧与

帧取RMS。

uint16_t DET_TraceDetectRatio 设置DET迹线检波比。

GainStrategy_TypeDef

GainStrategy

请参考IQS_ProfileDeInit()函数同名结构体参数详细定义。

PreamplifierState_TypeDef

Preamplifier

uint8_t AnalogIFBWGrade

uint8_t IFGainGrade

ReferenceClockSource_TypeDef

ReferenceClockSource

double ReferenceClockFrequency

uint8_t EnableReferenceClockOu

t

SystemClockSource_TypeDef

SystemClockSource

double

ExternalSystemClockFrequency

int8_t Atten

DCCancelerMode_TypeDef

DCCancelerMode

QDCMode_TypeDef

API 编程指南 83

QDCMode

float QDCIGain

float QDCQGain

float QDCPhaseComp

int8_t DCCIOffset

int8_t DCCQOffset

LOOptimization_TypeDef

LOOptimization

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open后调用。

示例 请参考DET_GetPowerStream ()函数相关示例。

15.2 DET_Configuration

int DET_Configuration(void** Device, const DET_Profile_TypeDef* ProfileIn, DET_Profile_TypeDef

* ProfileOut, DET_StreamInfo_TypeDef* StreamInfo)

功能描述

配置DET模式的相关参数。DET模式下的中心频率、参考电平、抽取倍数等参数统一封装在

DET_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const DET_Profile_TypeDef*

DET_ProfileIn

DET配置结构体指针，为输入变量。

请参考 DET_ProfileDeInit ()函数同名结构体参数详细定义。

DET_Profile_TypeDef*

DET_ProfileOut

DET配置结构体指针，为输出变量。

请参考 DET_ProfileDeInit ()函数同名结构体参数详细定义。

DET_StreamInfo_TypeDef*

StreamInfo

DET模式下，DET数据的相关信息。

DET_StreamInfo_TypeDef 详细定义

uint64_t PacketCount 单次触发的数据包总数。

uint64_t StreamSamples 单次触发的总数据点数， TriggerMode = Fixedpoints 时有效，

TriggerMode = Adaptive时无效，值为0。

uint64_t StreamDataSize 单次触发的总数据字节数， TriggerMode = Fixedpoints 时有效，

TriggerMode = Adaptive时无效，值为0。

API 编程指南 84

uint32_t PacketSamples 单个数据包中包含的数据点数。即每次调用DET_GetPowerStream函数获

取到的数据包中采样点数。

uint32_t PacketDataSize 单个数据包中包含的数据字节数。即每次调用DET_GetPowerStream函数

所得到的数据字节数。

double TimeResolution 数据点的时间分辨率，单位秒。

uint32_t GainParameter 增益参数信息。

Bit31~24：表示增益空间；

Bit23~16：表示前置放大器状态；

Bit15~0：表示频段信息。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DET_ProfileDeInit之后进行调用。

示例 请参考DET_GetPowerStream ()函数相关示例。

15.3 DET_BusTriggerStart

int DET_BusTriggerStart(void** Device)

功能描述

将发起总线触发。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DET_GetPowerStream之前进行调用。

示例 请参考DET_GetPowerStream ()函数相关示例。

15.4 DET_BusTriggerStop

int DET_BusTriggerStop(void** Device)

功能描述

将终止当前总线触发。当配置TriggerMode = FixedPoints时，总线触发在由DET_BusTriggerStart函数发起并

达到指定触发长度后会自行终止，而无需调用该函数。

兼容性 0.55.0及之后版本支持

参数说明

API 编程指南 85

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DET_GetPowerStream之后进行调用。

示例 请参考DET_GetPowerStream ()函数相关示例。

15.5 DET_GetPowerStream

int DET_GetPowerStream(void** Device, float NormalizedPowerStream[], float* ScaleToV, DET_Tr

iggerInfo_TypeDef* TriggerInfo, MeasAuxInfo_TypeDef* MeasAuxInfo)

功能描述

获取DET模式下的检波数据，并得到整型至绝对幅度 (V单位)的比例因子及触发相关的信息，

NormalizedPowerStream为I方+Q方开根号。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

float NormalizedPowerStream[] √𝑰𝟐 +𝑸𝟐的值。

float* ScaleToV NormalizedPowerStream至电压绝对值（V）的系数。

DET_TriggerInfo_TypeDef*

TriggerInfo

DET数据的触发相关信息。

请参考 IQS_GetIQStream ()函数同名结构体参数详细定义。

MeasAuxInfo_TypeDef*

MeasAuxInfo

返回测量数据的辅助信息。

请参考 SWP_GetPartialSweep ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DET_Configuration之后进行调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

DET_Profile_TypeDef ProfileIn, ProfileOut;

DET_StreamInfo_TypeDef StreamInfo;

Status = DET_ProfileDeInit(&Device, &ProfileIn);

Status = DET_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

API 编程指南 86

vector<float> NormalizedPowerStream(StreamInfo.PacketSamples);

float ScaleToV;

DET_TriggerInfo_TypeDef TriggerInfo;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = DET_BusTriggerStart(&Device);

Status = DET_GetPowerStream(&Device, NormalizedPowerStream.data(), &ScaleToV, &TriggerInfo, &MeasAuxI

nfo);

Status = DET_BusTriggerStop(&Device);

Status = Device_Close(&Device);

15.6 DET_SyncTimer

int DET_SyncTimer (void** Device)

功能描述

调用此函数发起定时器-外触发同步。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DET_Configuration之后进行调用，且TriggerSource选择Timer。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

DET_Profile_TypeDef ProfileIn, ProfileOut;

DET_StreamInfo_TypeDef StreamInfo;

Status = DET_ProfileDeInit(&Device, &ProfileIn);

ProfileIn.TriggerSource = Timer;

ProfileIn. TriggerTimerSync = SyncToExt_RisingEdge;

Status = DET_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

Status = DET_SyncTimer (&Device);

Status = Device_Close(&Device);

API 编程指南 87

16 零扫宽 ZeroSpan 模式

ZeroSpan模式用于对信号进行零扫宽分析，提供信号在特定频率下的实时功率测量，帮助

用户精确捕捉瞬时信号变化。

16.1 ZSP_ProfileDeInit

int ZSP_ProfileDeInit (void** Device, ZSP_Profile_TypeDef* UserProfile_O)

功能描述

初始化配置ZeroSpan模式的相关参数。ZeroSpan模式下的中心频率、参考电平、抽取倍数等参数统一封装

在ZSP_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

ZSP_Profile_TypeDef*

UserProfile_O

ZeroSpan配置结构体指针，为输入/输出变量。

ZSP_Profile_TypeDef 详细定义

double CenterFreq_Hz 请参考DET_ProfileDeInit()函数同名结构体参数详细定义。

double RefLevel_dBm

uint32_t DecimateFactor

RxPort_TypeDef RxPort

uint32_t BusTimeout_ms

DET_TriggerSource_TypeDef

TriggerSource

TriggerEdge_TypeDef TriggerEdge

TriggerMode_TypeDef

TriggerMode

uint64_t TriggerLength

TriggerOutMode_TypeDef

TriggerOutMode

TriggerOutPulsePolarity_TypeDef

 TriggerOutPulsePolarity

double TriggerLevel_dBm

double TriggerLevel_SafeTime

double TriggerDelay

API 编程指南 88

double PreTriggerTime

TriggerTimerSync_TypeDef

TriggerTimerSync

double TriggerTimer_Period

uint8_t EnableReTrigger

double ReTrigger_Period

uint16_t ReTrigger_Count

Detector_TypeDef Detector

uint16_t DET_TraceDetectRatio

GainStrategy_TypeDef

 GainStrategy

PreamplifierState_TypeDef

Preamplifier

uint8_t AnalogIFBWGrade

uint8_t IFGainGrade

ReferenceClockSource_TypeDef

 ReferenceClockSource

double ReferenceClockFrequency

uint8_t

EnableReferenceClockOut

SystemClockSource_TypeDef

SystemClockSource

double

ExternalSystemClockFrequency

int8_t Atten

DCCancelerMode_TypeDef

DCCancelerMode

QDCMode_TypeDef

QDCMode

float QDCIGain

float QDCQGain

float QDCPhaseComp

int8_t DCCIOffset

int8_t DCCQOffset

LOOptimization_TypeDef LOOpti

mization

double RBW_Hz 分辨率带宽

API 编程指南 89

double VBW_Hz 视频带宽。

VBWMode_TypeDef VBWMode VBW更新方式。

RBWFilterType_TypeDef

RBWFilterType

RBW滤波器类型。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open后调用。

示例 请参考ZSP_Configuration ()函数相关示例。

16.2 ZSP_Configuration

int ZSP_Configuration(void** Device, const ZSP_Profile_TypeDef* ProfileIn, ZSP_Profile_TypeDef*

 ProfileOut, DET_StreamInfo_TypeDef* StreamInfo)

功能描述

配置ZeroSpan模式的相关参数。ZeroSpan模式下的中心频率、参考电平、抽取倍数等参数统一封装在

ZSP_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const ZSP_Profile_TypeDef*

ProfileIn

ZSP配置结构体指针，为输入变量。

请参考 ZSP_ProfileDeInit ()函数同名结构体参数详细定义。

ZSP_Profile_TypeDef*

ProfileOut

ZSP配置结构体指针，为输出变量。

请参考 ZSP_ProfileDeInit ()函数同名结构体参数详细定义。

DET_StreamInfo_TypeDef*

StreamInfo

ZSP模式下，ZSP数据的相关信息。

请参考 DET_Configuration ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在ZSP_ProfileDeInit之后进行调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

ZSP_Profile_TypeDef ProfileIn, ProfileOut;

API 编程指南 90

DET_StreamInfo_TypeDef StreamInfo;

Status = ZSP_ProfileDeInit(&Device, &ProfileIn);

ProfileIn.CenterFreq_Hz = 1e9;

ProfileIn.DecimateFactor = 2;

Status = ZSP_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

Status = Device_Close(&Device);

API 编程指南 91

17 实时频谱 RTA

RTA为实时频谱分析模式，可帮助用户观察跳频或短暂的瞬态突发信号。

17.1 RTA_ProfileDeInit

int RTA_ProfileDeInit(void** Device, RTA_Profile_TypeDef* UserProfile_O)

功能描述

初始化配置RTA模式的相关参数。RTA模式下的中心频率、参考电平、抽取倍数等参数统一封装在

RTA_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

RTA_Profile_TypeDef

*UserProfile_O

RTA配置结构体指针，为输入/输出变量。

RTA_Profile_TypeDef 详细定义

double CenterFreq_Hz 请参考 SWP_ProfileDeInit ()函数同名结构体参数详细定义。

double RefLevel_dBm

double RBW_Hz

double VBW_Hz

RBWMode_TypeDef RBWMode

VBWMode_TypeDef VBWMode

uint32_t DecimateFactor 设置抽取倍数。

Window_TypeDef Window 请参考 SWP_ProfileDeInit ()函数同名结构体参数详细定义。

SweepTimeMode_TypeDef

 SweepTimeMode

double SweepTime

Detector_TypeDef Detector

TraceDetectMode_TypeDef

TraceDetectMode

TraceDetector_TypeDef

TraceDetector

uint32_t TraceDetectRatio 迹线检波检波比。迹线检波器将原始频谱迹线以每TraceDetectRatio个原

始频谱数据点检出1个输出频谱数据点。

RxPort_TypeDef RxPort 请参考IQS_ProfileDeInit()函数同名结构体参数详细定义。

uint32_t BusTimeout_ms

API 编程指南 92

RTA_TriggerSource_TypeDef

TriggerSource

TriggerEdge_TypeDef TriggerEdge

TriggerMode_TypeDef

TriggerMode

double TriggerAcqTime 设置输入触发后的采样时间，仅在FixedPoints模式下生效。

TriggerOutMode_TypeDef

TriggerOutMode

请参考IQS_ProfileDeInit()函数同名结构体参数详细定义。

TriggerOutPulsePolarity_TypeDef

 TriggerOutPulsePolarity

double TriggerLevel_dBm

double TriggerLevel_SafeTime

double TriggerDelay

double PreTriggerTime

TriggerTimerSync_TypeDef

TriggerTimerSync

double TriggerTimer_Period

uint8_t EnableReTrigger

double ReTrigger_Period

uint16_t ReTrigger_Count

GainStrategy_TypeDef

GainStrategy

PreamplifierState_TypeDef

Preamplifier

uint8_t AnalogIFBWGrade

uint8_t IFGainGrade

ReferenceClockSource_TypeDef

ReferenceClockSource

double ReferenceClockFrequency

uint8_t EnableReferenceClockOu

t

SystemClockSource_TypeDef

SystemClockSource

double

ExternalSystemClockFrequency

int8_t Atten

DCCancelerMode_TypeDef

API 编程指南 93

DCCancelerMode

QDCMode_TypeDef

QDCMode

float QDCIGain

float QDCQGain

float QDCPhaseComp

int8_t DCCIOffset

int8_t DCCQOffset

LOOptimization_TypeDef

LOOptimization

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open后调用。

示例 请参考RTA_GetRealTimeSpectrum ()函数相关示例。

17.2 RTA_Configuration

int RTA_Configuration(void** Device, const RTA_Profile_TypeDef* ProfileIn, RTA_Profile_TypeDef

* ProfileOut, RTA_FrameInfo_TypeDef* FrameInfo)

功能描述

配置 RTA模式的相关参数。 RTA模式下的中心频率、参考电平、抽取倍数等参数统一封装在

RTA_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

const RTA_Profile_TypeDef*

RTA_ProfileIn

RTA配置结构体指针，为输入变量。

请参考RTA_ProfileDeInit()函数同名结构体参数详细定义。

RTA_Profile_TypeDef*

RTA_ProfileOut

RTA配置结构体指针，为输出变量。

请参考RTA_ProfileDeInit()函数同名结构体参数详细定义。

RTA_FrameInfo_TypeDef*

StreamInfo

RTA模式下，RTA数据的相关信息。

RTA_FrameInfo_TypeDef 详细定义

double StartFrequency_Hz 频谱的起始频率。

double StopFrequency_Hz 频谱的终止频率。

double POI 100%截获概率下的信号最短持续时间,以s为单位。

API 编程指南 94

double TraceTimestampStep 每包数据内各条Trace的时间戳步进。(包整体时间戳为TriggerInfo中的

SysTimerCountOfFirstDataPoint)

double TimeResolution 每个时域数据的采样时间，也是时间戳的分辨率。

double PacketAcqTime 每包数据对应的采集时间。

uint32_t PacketCount 当前配置对应的总数据包数，仅在FixedPoints模式下生效。

uint32_t PacketFrame 每个数据包中的有效帧数。

uint32_t FFTSize 每帧FFT的点数。

uint32_t FrameWidth FFT帧截取后的点数，也是数据包中每条Trace的点数，可作为概率密度

图的X轴点数(宽度)。

uint32_t FrameHeight FFT帧对应的频谱幅度范围，可作为概率密度图的Y轴点数(高度)。

uint32_t PacketSamplePoints 每包数据对应的采集点数。

uint32_t PacketValidPoints 每包数据中所含的频域有效数据点数。

uint32_t MaxDensityValue 概率密度位图的单个位点元素值上限。

uint32_t GainParameter 增益相关参数，包括 Space(31~24Bit)、PreAmplifierState(23~16Bit)、

StartRFBand(15~8Bit)、StopRFBand(7~0Bit)。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在RTA_ProfileDeInit之后进行调用。

示例 请参考RTA_GetRealTimeSpectrum ()函数相关示例。

17.3 RTA_BusTriggerStart

int RTA_BusTriggerStart(void** Device)

功能描述

将发起总线触发。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在RTA_GetRealTimeSpectrum之前进行调用。

示例 请参考RTA_GetRealTimeSpectrum ()函数相关示例。

API 编程指南 95

17.4 RTA_BusTriggerStop

int RTA_BusTriggerStop(void** Device)

功能描述

将终止当前总线触发。当配置TriggerMode = FixedPoints时，总线触发在由RTA_BusTriggerStart函数发起并

达到指定触发长度后会自行终止，而无需调用该函数。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在RTA_GetRealTimeSpectrum之后进行调用。

示例 请参考RTA_GetRealTimeSpectrum ()函数相关示例。

17.5 RTA_GetRealTimeSpectrum_Raw

int RTA_GetRealTimeSpectrum_Raw(void** Device, uint8_t SpectrumStream[], RTA_PlotInfo_Typ

eDef* PlotInfo, RTA_TriggerInfo_TypeDef* TriggerInfo, MeasAuxInfo_TypeDef* MeasAuxInfo);

功能描述

获取RTA模式下的实时频谱（无概率密度图）及触发相关信息。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

uint8_t SpectrumStream[] 返回由连续频谱帧组成的频谱流，表示为相对功率，LSB = 0.75dB。此

数组大小等于通过 RTA_Configuration 函数得到的 RTA_FrameInfo.

PacketValidPoints。

RTA_PlotInfo_TypeDef*

RTA_PlotInfo

RTA获取后返回的绘图信息结构体。

RTA_TriggerInfo_TypeDef*

TriggerInfo

RTA数据的触发相关信息。

请参考 IQS_GetIQStream ()函数同名结构体参数详细定义。

MeasAuxInfo_TypeDef*

MeasAuxInfo

返回测量数据的辅助信息。

请参考SWP_GetPartialSweep()函数同名结构体参数详细定义。

RTA_PlotInfo_TypeDef 详细定义

float ScaleTodBm

API 编程指南 96

float OffsetTodBm 频谱帧幅度至dBm的比例因子与偏置值。频谱帧的幅度绝对功率等于

SpectrumStream[] * ScaleTodBm + OffsetTodBm。

uint64_t SpectrumBitmapIndex 当前概率密度图片段在完整触发数据中的序号。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在RTA_Configuration之后进行调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

RTA_Profile_TypeDef ProfileIn, ProfileOut;

RTA_FrameInfo_TypeDef FrameInfo;

Status = RTA_ProfileDeInit(&Device, &ProfileIn);

Status = RTA_Configuration(&Device, &ProfileIn, &ProfileOut, &FrameInfo);

vector<uint8_t> SpectrumTrace(FrameInfo.PacketValidPoints);

RTA_TriggerInfo_TypeDef TriggerInfo;

RTA_PlotInfo_TypeDef PlotInfo;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = RTA_BusTriggerStart(&Device);

Status=RTA_GetRealTimeSpectrum_Raw(&Device,SpectrumTrace.data(),&PlotInfo,&TriggerInfo,&MeasAuxInf

o);

Status = RTA_BusTriggerStop(&Device);

Status = Device_Close(&Device);

17.6 RTA_GetRealTimeSpectrum

int RTA_GetRealTimeSpectrum(void** Device, uint8_t SpectrumStream[], uint16_t SpectrumBitm

ap[], RTA_PlotInfo_TypeDef* PlotInfo, RTA_TriggerInfo_TypeDef* TriggerInfo, MeasAuxInfo_Type

Def* MeasAuxInfo)

功能描述

获取实时频谱模式下的频谱数据。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

API 编程指南 97

uint8_t SpectrumStream[] 返回由连续频谱帧组成的频谱流，表示为相对功率，LSB = 0.75dB。此

数组大小等于通过 RTA_Configuration 函数得到的 RTA_FrameInfo.

PacketValidPoints。

uint16_t SpectrumBitmap[] 返回概率密度图位图。此数组大小等于通过RTA_Configuration函数得

到的RTA_FrameInfo.FrameHeight * RTA_FrameInfo.FrameWidth。

RTA_PlotInfo_TypeDef*

RTA_PlotInfo

RTA获取后返回的绘图信息结构体。

请参考 RTA_GetRealTimeSpectrum_Raw ()函数同名结构体参数详细定

义。

RTA_TriggerInfo_TypeDef*

TriggerInfo

RTA数据的触发相关信息。

请参考 IQS_GetIQStream ()函数同名结构体参数详细定义。

MeasAuxInfo_TypeDef*

MeasAuxInfo

返回测量数据的辅助信息。

请参考SWP_GetPartialSweep()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在RTA_Configuration之后进行调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

RTA_Profile_TypeDef ProfileIn, ProfileOut;

RTA_FrameInfo_TypeDef FrameInfo;

Status = RTA_ProfileDeInit(&Device, &ProfileIn);

Status = RTA_Configuration(&Device, &ProfileIn, &ProfileOut, &FrameInfo);

vector<uint8_t> SpectrumTrace(FrameInfo.PacketValidPoints);

vector<uint16_t> SpectrumBitmap(FrameInfo.FrameHeight* FrameInfo.FrameWidth);

RTA_TriggerInfo_TypeDef TriggerInfo;

RTA_PlotInfo_TypeDef PlotInfo;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = RTA_BusTriggerStart(&Device);

Status = RTA_GetRealTimeSpectrum(&Device, SpectrumTrace.data(), SpectrumBitmap.data(), &PlotInfo, &Trigg

erInfo, &MeasAuxInfo);

Status = RTA_BusTriggerStop(&Device);

Status = Device_Close(&Device);

API 编程指南 98

17.7 RTA_SyncTimer

int RTA_SyncTimer (void** Device)

功能描述

调用此函数发起定时器-外触发单次同步。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在RTA_Configuration之后进行调用，且TriggerSource选择Timer。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

RTA_Profile_TypeDef ProfileIn, ProfileOut;

RTA_FrameInfo_TypeDef FrameInfo;

Status = RTA_ProfileDeInit(&Device, &ProfileIn);

ProfileIn.TriggerSource = Timer;

ProfileIn. TriggerTimerSync = SyncToExt_RisingEdge;

Status = RTA_Configuration(&Device, &ProfileIn, &ProfileOut, &FrameInfo);

Status = RTA_SyncTimer (&Device);

Status = Device_Close(&Device);

API 编程指南 99

18 数字解调 Digital Demod（选件）

由调制信号频谱图、解调后的星座图、眼图和解调参数组成，深入分析信号的调制质量，

提供多项误差指标，有效评估信号在传输中的完整性和可靠性。

18.1 Demod_Check

int Demod_Check ()

功能描述

核验解调库是否存在。

兼容性 0.55.55及之后版本支持

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无。

示例

int Status = -1;

Status = Demod_Check ()；

18.2 Demod_Open

int Demod_Open (void** Device)

功能描述

打开解调功能，检测是否存在许可证和开辟需要的内存。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：存在；非0：不存在。

调用约束 在Device_Open之后进行调用。

示例 请参考Demod_Execute ()函数相关示例。

18.3 Demod_Close

int Demod_Close (void** Device)

功能描述

关闭解调功能。

兼容性 0.55.55及之后版本支持

API 编程指南 100

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Demod_Open之后进行调用。

示例 请参考Demod_Execute ()函数相关示例。

18.4 Demod_Reset

int Demod_Reset (void** Device)

功能描述

重置解调功能，当IQ数据不连续时，在每次调用Demod_Execute前，都需要先调用Demod_Reset，若IQ数

据连续，则一直调用Demod_Execute即可。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Demod_Open之后进行调用。

示例 请参考Demod_Execute ()函数相关示例。

18.5 Demod_GetVersion

int Demod_GetVersion (void** Device, char version[])

功能描述

获取解调API版本。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

char version[] 返回解调API版本。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Demod_Open之后进行调用。

示例 请参考Demod_Execute ()函数相关示例。

API 编程指南 101

18.6 Demod_DeInit

void Demod_DeInit (Demod_Profile_TypeDef* DemodProfile)

功能描述

初始化解调配置结构体，将结构体中的每个参数都赋初值。

兼容性 0.55.55及之后版本支持

参数说明

Demod_Profile_TypeDef*

DemodProfile

解调配置结构体。

Demod_Profile_TypeDef 详细定义

uint64_t SamplePoints 采样点数。

double SampleRate 采样率，Hz。

double SymbolRate 符号率，sym/s。

Demod_ModType_TypeDef

ModType

设置待解调信号的调制类型，支持FSK2/ FSK4/ GMSK/ BPSK/ QPSK/

PSK8/ QAM16/ ASK2/ QAM64/ AM/ FM/ PM/ CW/ LowerSideband/

UpperSideband/ QAM128/ QAM256。

Demod_FilterType_TypeDef

FilterType

滤波器类型：

RootRaisedCosine：根升余弦滤波器；

double FilterAlpha 滤波器滚降系数(目前仅支持根升余弦，0.01 <= Alpha <= 0.99)。

返回值 无。

调用约束 在Demod_Open之后进行调用。

示例 请参考Demod_Execute ()函数相关示例。

18.7 Demod_Configuration

int Demod_Configuration (void** Device, const Demod_Profile_TypeDef* DemodProfileIn, Demo

d_Profile_TypeDef* DemodProfileOut)

功能描述

配置解调参数。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

const Demod_Profile_TypeDef*

DemodProfileIn

输入解调配置结构体。

请参考 Demod_DeInit ()函数同名结构体参数详细定义。

API 编程指南 102

Demod_Profile_TypeDef*

DemodProfileOut

输出解调配置结构体，若输入配置不合理，将回写输出配置结构体为

合理参数。

请参考 Demod_DeInit ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Demod_Open之后进行调用。

示例 请参考Demod_Execute ()函数相关示例。

18.8 Demod_Execute

int Demod_Execute (void** Device,const IQStream_TypeDef* IQStream, DemodInfo_TypeDef* De

modInfo)

功能描述

执行解调功能。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

const IQStream_TypeDef*

IQStream

IQ数据流，包括IQ数据及相关配置信息等。

请参考IQS_GetIQStream_PM1()函数同名结构体参数详细定义。

DemodInfo_TypeDef* DemodInfo 解调信息结构体，包括：眼图、星座图、EVM等，注意：结构体中所

有指针变量将指向函数内部的空间，无需用户在外部手动开辟。

DemodInfo_TypeDef* DemodInfo 输出解调信息结构体。

DemodInfo_TypeDef 详细定义

double* eDiagram 眼图数据起始内存地址。

uint32_t eDiagram_Len 眼图数据长度。

double* I_constellation I路星座图数据起始内存地址。

double* Q_constellation Q路星座图数据起始内存地址。

uint32_t constellation_Len 星座图数据长度。

int32_t* bitStream 比特流数据起始内存地址。

uint32_t bitStream_Len 比特流数据长度。

int32_t* symbol 码流数据起始内存地址。

uint32_t symbol_Len 码流数据长度。

double* EVM EVM数据起始内存地址，同为FSK Error、ASK Error 。

uint32_t EVM_Len EVM数据长度。

double EVM_RMS 均方根EVM。

API 编程指南 103

double EVM_MAX 峰值EVM。

double* PhaseError 相位误差数据起始内存地址，单位角度。

uint32_t PhaseError_Len 相位误差数据长度。

double PhaseError_RMS 均方根相位误差，单位角度。

double PhaseError_MAX 峰值相位误差，单位角度。

double* MagError 幅度误差数据起始内存地址。

uint32_t MagError_Len 幅度误差数据长度。

double MagError_RMS 均方根幅度误差。

double MagError_MAX 峰值幅度误差。

double FreqError 频率误差，载波相对于中心频率的频率误差，同为CarrFreqOffset，单

位Hz。

double IQ_Offset IQ偏移，单位dB，仅PSK、QAM。

double SNR 信噪比，单位dB，仅PSK、QAM。

double GainImb IQ增益不平衡，单位dB，仅PSK、QAM。

double QuadError IQ正交倾斜误差，单位角度，仅PSK、QAM。

double FSK_Deviation FSK频偏，单位Hz。

double CarrPower 载波功率，单位dBm，仅ASK。

double ASK_Depth ASK调制深度。

double AM_Depth AM调制深度。

double FM_Deviation FM调制频偏，单位Hz。

double* Phase PM解调数据起始内存地址。

uint32_t Phase_Len PM解调数据长度。

double* Freq FM解调数据起始内存地址。

uint32_t Freq_Len FM解调数据长度。

double* Amp AM解调数据起始内存地址。

uint32_t Amp_Len AM解调数据长度。

double* SSB SSB解调数据起始内存地址，上边带和下边带均用此参数。

uint32_t SSB_Len SSB解调数据长度。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Demod_Open之后进行调用。

示例

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

API 编程指南 104

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef IQS_ProfileIn, IQS_ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

IQS_TriggerInfo_TypeDef TriggerInfo;

IQS_ProfileDeInit(&Device, &IQS_ProfileIn);

IQS_ProfileIn.CenterFreq_Hz = 1e9;

IQS_ProfileIn.RefLevel_dBm = 0;

IQS_ProfileIn.DataFormat = Complex16bit; //注意：解调函数目前只能输入 int16 类型的 IQ 数据

IQS_ProfileIn.TriggerMode = FixedPoints;

IQS_ProfileIn.TriggerSource = Bus;

IQS_ProfileIn.DecimateFactor = 4;

IQS_ProfileIn.TriggerLength = 32484;

Status = IQS_Configuration(&Device, &IQS_ProfileIn, &IQS_ProfileOut, &StreamInfo);

IQStream_TypeDef IQStream;

vector<int16_t> IQ(StreamInfo.StreamSamples * 2);

vector<int16_t> I(StreamInfo.StreamSamples);

vector<int16_t> Q(StreamInfo.StreamSamples);

Status = Demod_Open(&Device);

vector<char> version(50);

Demod_GetVersion(&Device, version.data());

Demod_Profile_TypeDef DemodProfileIn, DemodProfileOut;

DemodInfo_TypeDef DemodInfo;

Demod_DeInit(&DemodProfileIn);

DemodProfileIn.SamplePoints = StreamInfo.StreamSamples;

DemodProfileIn.SampleRate = StreamInfo.IQSampleRate;

DemodProfileIn.ModType = QAM16;

DemodProfileIn.SymbolRate = 100e3;

Status = Demod_Configuration(&Device, &DemodProfileIn, &DemodProfileOut);

IQS_ProfileIn.TriggerLength = DemodProfileOut.SamplePoints;

Status = IQS_Configuration(&Device, &IQS_ProfileIn, &IQS_ProfileOut, &StreamInfo);

DemodProfileIn.SamplePoints = StreamInfo.StreamSamples;

Status = Demod_Configuration(&Device, &DemodProfileIn, &DemodProfileOut);

while (1) {uint32_t Points = StreamInfo.PacketSamples;

Status = IQS_BusTriggerStart(&Device);

API 编程指南 105

for (uint32_t i = 0; i < StreamInfo.PacketCount; i++) {

Status = IQS_GetIQStream_PM1(&Device, &IQStream);

if (i == StreamInfo.PacketCount - 1 && StreamInfo.StreamSamples % StreamInfo.PacketSamples != 0){

Points = StreamInfo.StreamSamples % StreamInfo.PacketSamples;}

memcpy(IQ.data() + i * StreamInfo.PacketSamples * 2, IQStream.AlternIQStream, Points * 2 * sizeof(IQ[0]));}

 IQStream.AlternIQStream = IQ.data();

 //若每次做解调的 IQ 数据不是连续的，则需要先调用 Demod_Reset，再调用 Demod_Execute

 Demod_Reset(&Device);

 Status = Demod_Execute(&Device, &IQStream, &DemodInfo);}

Status = Demod_Close(&Device);

Status = Device_Close(&Device);

18.9 Demod_GenSymbolMap

Void Demod_GenSymbolMap (Demod_ModType_TypeDef ModType, Demod_SymbolMap_TypeD

ef SymbolMap[1024], uint32_t* MapNum)

功能描述

根据输入的调制类型，生成一个符号映射表，并计算出符号映射表中符号的数量。

兼容性 0.55.55及之后版本支持

参数说明

Demod_ModType_TypeDef

ModType

调制类型。

Demod_SymbolMap_TypeDef

SymbolMap[1024]

表示符号映射表中的单个符号。该符号的映射表是用于调制解调过程

中的符号与坐标之间的关系映射。

uint32_t* MapNum 符号映射表中可用的符号个数。

Demod_SymbolMap_TypeDef详细定义

float I x轴坐标，表示符号在复数平面中的实部。

float Q y轴坐标，表示符号在复数平面中的虚部。

返回值 无。

调用约束 无。

示例

int Status = -1;

Demod_ModType_TypeDef ModType = QPSK;

Demod_SymbolMap_TypeDef SymbolMap[1024];

uint32_t MapNum = 0;

Demod_GenSymbolMap(ModType, SymbolMap, &MapNum);

API 编程指南 106

19 脉冲检测 Pulse Det（选件）

19.1 Pulse_Open

int Pulse_Open (void** Device)

功能描述

打开脉冲检测功能，检测是否存在许可证和开辟需要的内存。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open之后进行调用。

示例 请参考Pulse_Detect ()函数相关示例。

19.2 Pulse_Close

int Pulse_Close (void** Device)

功能描述

关闭脉冲检测功能。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open 和Pulse_Open之后进行调用。

示例 请参考Pulse_Detect ()函数相关示例。

19.3 Pulse_Detect

int Pulse_Detect(void** Device, const Pulse_Profile_TypeDef* Pulse_Profile, PulseInfo_TypeDef*

PulseInfo)

功能描述

对获取的检波分析数据执行脉冲检测功能。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

API 编程指南 107

const Pulse_Profile_TypeDef*

Pulse_Profile

输入脉冲检测数据，包括：需要检测的数据、阈值等。

PulseInfo_TypeDef* PulseInfo 输出脉冲检测结果，包括：脉宽、周期、占空比等。

Pulse_Profile_TypeDef 详细定义

uint32_t ExpPulseNum 期望获取的脉冲数量。

Unit_TypeDef unit 脉冲数据单位。

Voltage_V：V；

Power_dBm：dBm。

float* Pulse 脉冲数据的起始内存地址，数据单位取决于unit。

uint64_t PulseSize 脉冲数据长度。

double TimeResolution_s 脉冲数据时间分辨率，单位秒s。

double DetThreshold 脉冲检测门限，单位与数据保持一致。

PulseInfo_TypeDef 详细定义

uint32_t ActPulseNum 实际获取的脉冲数量，按照此数量可从指针变量中获取每个脉冲的的

检测结果。

PulseTDParam_TypeDef*

PulseTDParam

脉冲检测时域参数的起始内存地址。

PulseAMPParam_TypeDef*

PulseAMPParam

脉冲检测幅度参数的起始内存地址。

PulseEstParam_TypeDef*

PulseEstParam

脉冲检测绘图参数的起始内存地址。

PulseStatsParam_TypeDef

PulseStats

脉冲检测统计参数。

PulseTDParam_TypeDef 详细定义

double RiseTime 上升时间。

double RiseEdge 上升沿。

double FallTime 下降时间。

double FallEdge 下降沿。

double Width 脉宽。

double Period 周期。

float DutyCycle 占空比%。

PulseAMPParam_TypeDef 详细定义

float TopLevel_dBm 峰值电平dBm。

float TopLevel_V 峰值电平V。

API 编程指南 108

float BaseLevel_dBm 基准电平dBm。

float BaseLevel_V 基准电平V。

float TopToBaseRatio_dB 峰基比dB。

float TopToBaseDiff_V 峰基差V。

float Droop_dB 下垂dB。

float Droop_V 下垂V。

float Overshoot_dB 过冲dB。

float Overshoot_V 过冲V。

float Ripple_dB 波纹dB。

float Ripple_V 波纹V。

PulseEstParam_TypeDef详细定义

double Level_10pct_Index[2] 10% 电平值所在的数组下标，0为上升沿的下标，1为下降沿的下标。

double Level_50pct_Index[2] 50% 电平值所在的数组下标，0为上升沿的下标，1为下降沿的下标。

double Level_90pct_Index[2] 90% 电平值所在的数组下标，0为上升沿的下标，1为下降沿的下标。

double Level_95pct_Index[2] 95% 电平值所在的数组下标，0为上升沿的下标，1为下降沿的下标。

double Width_25pct_Index 脉宽位置的数组下标。

double Width_75pct_Index 75% 脉宽位置的数组下标。

uint64_t Start_Index 推测出的信号与噪声的数据起始下标。

uint64_t Size 推测出的信号与噪声的数据长度。

float* Noise_dBm 推测出的噪声数据起始内存地址dBm。

float* Noise_V 推测出的噪声数据起始内存地址V。

float* Signal_dBm 推测出的信号数据起始内存地址dBm。

float* Signal_V 推测出的信号数据起始内存地址V。

PulseStatsParam_TypeDe详细定义

double MinPRI 最小周期。

double MaxPRI 最大周期。

double MeanPRI 平均周期。

double MinPW 最小脉宽。

double MaxPW 最大脉宽。

double MeanPW 平均脉宽。

float PRIDeviationPercent 周期偏差百分比。

float PWDeviationPercent 脉宽偏差百分比。

返回值 0：无异常；非0：异常，详见附录1。

API 编程指南 109

调用约束 在Device_Open 和Pulse_Open之后进行调用。

示例

int Status = -1;int DeviceNum = 0;void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

Status = Pulse_Open (&Device);

DET_Profile_TypeDef DET_ProfileIn, DET_ProfileOut;

DET_StreamInfo_TypeDef StreamInfo;

DET_ProfileDeInit(&Device, &DET_ProfileIn);

DET_ProfileIn.CenterFreq_Hz = 1e9;

DET_ProfileIn.RefLevel_dBm = 0;

DET_ProfileIn.DecimateFactor = 1;

DET_ProfileIn.TriggerMode = FixedPoints;

DET_ProfileIn.TriggerSource = Bus;

DET_ProfileIn.TriggerLength = 16242;

Status = DET_Configuration(&Device, &DET_ProfileIn, &DET_ProfileOut, &StreamInfo);

vector<float> NormalizedPowerStream(StreamInfo.PacketCount * StreamInfo.PacketSamples);

float ScaleToV = 0;

DET_TriggerInfo_TypeDef TriggerInfo;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = DET_BusTriggerStart(&Device);

for (uint32_t i = 0; i < StreamInfo.PacketCount; i++){

Status = DET_GetPowerStream(&Device, NormalizedPowerStream.data() + i * StreamInfo.PacketSamples, &S

caleToV, &TriggerInfo, &MeasAuxInfo);

}

vector<float> NormalizedPowerStream_dBm(NormalizedPowerStream.size());//将 DET 数据的单位转换成 dBm

for (int i = 0; i < StreamInfo.StreamSamples; i++){

NormalizedPowerStream_dBm[i] = 10 * log10(20 * pow(NormalizedPowerStream[i] * ScaleToV, 2));

}

Status = Pulse_Open(&Device); //打开脉冲检测功能

Pulse_Profile_TypeDef Pulse_Profile;

Pulse_Profile.TimeResolution_s = StreamInfo.TimeResolution;

Pulse_Profile.PulseSize = NormalizedPowerStream_dBm.size();

Pulse_Profile.unit = Power_dBm;

API 编程指南 110

Pulse_Profile.DetThreshold = -20;

Pulse_Profile.ExpPulseNum = 10;

Pulse_Profile.Pulse = NormalizedPowerStream_dBm.data();

PulseInfo_TypeDef PulseInfo;

Status = Pulse_Detect(&Device, &Pulse_Profile, &PulseInfo);

Status = Pulse_Close(&Device);

Status = Device_Close(&Device);

19.4 Pulse_Detect_PM1

int Pulse_Detect_PM1 (void** Device, const Pulse_Profile_TypeDef* Pulse_Profile, PulseInfoPM1

_TypeDef* PulseInfoPM1)

功能描述

对获取的IQ数据执行脉冲检测功能。

兼容性 0.55.55及之后版本支持

参数说明

void** Device 设备句柄。

const Pulse_Profile_TypeDef*

Pulse_Profile

输入脉冲检测数据，包括：需要检测的数据、阈值等。

请参考Pulse_Detect()函数同名结构体参数详细定义。

PulseInfoPM1_TypeDef*

PulseInfoPM1

输出脉冲检测结果，包括脉冲调制类型、脉冲的频率和相位信息等。

PulseInfoPM1_TypeDef 详细定义

uint32_t ActPulseNum 实际获取的脉冲数量，按照此数量可从指针变量中获取每个脉冲的的

检测结果。

PulseTDParam_TypeDef*

PulseTDParam

脉冲检测时域参数的起始内存地址。

请参考Pulse_Detect()函数同名结构体参数详细定义。

PulseAMPParam_TypeDef*

PulseAMPParam

脉冲检测幅度参数的起始内存地址。

请参考Pulse_Detect()函数同名结构体参数详细定义。

PulseEstParam_TypeDef*

PulseEstParam

脉冲检测绘图参数的起始内存地址。

请参考Pulse_Detect()函数同名结构体参数详细定义。

PulseStatsParam_TypeDef

PulseStats

脉冲检测统计参数。

请参考Pulse_Detect()函数同名结构体参数详细定义。

uint8_t* Mod 脉冲调制类型，0表示CW，1表示LFM。

PulseFreqPhaseParam_TypeDef*

PulseFreqPhase

脉冲的频率和相位信息。

API 编程指南 111

PulseFreqPhaseParam_TypeDef 详细定义

double FreqMean 频率均值。

double FreqErrorRMS 频率误差。

double PhaseMean 相位均值。

double PhaseErrorRMS 相位误差。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在Device_Open 和Pulse_Open之后进行调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

Status = Pulse_Open(&Device);

IQS_Profile_TypeDef ProfileIn,ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

ProfileIn.CenterFreq_Hz = 1.00e9;

ProfileIn.DecimateFactor = 2;

ProfileIn.TriggerLength =16242*100;

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

void* AlternIQStream = NULL;

float ScaleToV = 0;

vector<float> IQ_Data(StreamInfo.StreamSamples * 2);

IQS_TriggerInfo_TypeDef TriggerInfo;

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = IQS_BusTriggerStart(&Device);

for (int j = 0; j < StreamInfo.PacketCount; j++){

 Status = IQS_GetIQStream(&Device, &AlternIQStream, &ScaleToV, &TriggerInfo, &MeasAuxInfo);

 int16_t* IQ = (int16_t*)AlternIQStream;

 for (int i = 0; i < StreamInfo.PacketSamples * 2; i ++){

 IQ_Data[i + StreamInfo.PacketSamples * 2 * j] = (float)IQ[i] * ScaleToV;

 }

}

Status = IQS_BusTriggerStop(&Device);

API 编程指南 112

Pulse_Profile_TypeDef Pulse_Profile;

Pulse_Profile.TimeResolution_s = 1.0/ StreamInfo.IQSampleRate;

Pulse_Profile.PulseSize = IQ_Data.size() / 2;

Pulse_Profile.unit = Power_dBm;

Pulse_Profile.DetThreshold = -20;

Pulse_Profile.ExpPulseNum = 10;

Pulse_Profile.Pulse = IQ_Data.data();

PulseInfoPM1_TypeDef PulseInfoPM1;

Status = Pulse_Detect_PM1(&Device, &Pulse_Profile, &PulseInfoPM1);

Status = Pulse_Close(&Device);

Status = Device_Close(&Device);

API 编程指南 113

20 辅助信号源 ASG（选件）

ASG为辅助信号源功能，可以输出单音或扫频信号，目前仅N45、N60、M60、M80支持添

加此选件。

20.1 ASG_ProfileDeInit

int ASG_ProfileDeInit(void** Device, ASG_Profile_TypeDef* Profile)

功能描述

调用此函数初始化ASG功能的相关参数，初始化模拟信号源。

兼容性 0.55.0及之后版本支持。

参数说明

void** Device 设备句柄。

ASG_Profile_TypeDef* Profile ASG配置结构体指针。

ASG_Profile_TypeDef 详细定义

double CenterFreq_Hz 中心频率，单位为Hz，在信号源工作在SIG_Fixed模式下生效；输入范围

1M-1GHz;步进1Hz。

double Level_dBm 输出功率，单位为dBm，在信号源工作在SIG_Fixed模式下生效；输入范

围-127--5dBm；步进0.25dB。

double StartFreq_Hz 频率扫描模式下的起始频率，单位为 Hz ，在信号源工作在

SIG_FreqSweep_*模式下生效；输入范围1M-1GHz;步进1Hz。

double StopFreq_Hz 频率扫描模式下的终止频率，单位为 Hz ，在信号源工作在

SIG_FreqSweep_*模式下生效；输入范围1M-1GHz;步进1Hz。

double StepFreq_Hz 频率扫描模式下的步进频率，单位为 Hz ，在信号源工作在

SIG_FreqSweep_*模式下生效；输入范围1M-1GHz;步进1Hz。

double StartLevel_dBm 功率扫描模式下的起始功率，单位为Hz。

double StopLevel_dBm 功率扫描模式下的终止功率，单位为Hz。

double StepLevel_dBm 功率扫描模式下的步进功率，单位为Hz。

double DwellTime_s 频率扫描模式 或 功率扫描模式 下，单位为s，当触发模式为BUS时，扫

描驻留时间，单位为s，在信号源工作在*Sweep*模式下生效；输入范围

0-1000000；步进1。

double ReferenceClockFrequency 指定参考频率：对内参考和外参考均生效。

ReferenceClockSource_TypeDef 选择参考时钟的输入源：

API 编程指南 114

ReferenceClockSource ReferenceClockSource_Internal：内部时钟源(默认10MHz)；

ReferenceClockSource_External：外部时钟源(默认10MHz)，当系统检测

到外部时钟无法锁定时，将自动切换至内部参考；

ReferenceClockSource_Internal_Premium：内部时钟源 -高品质，选择

DOCXO或OCXO；

ReferenceClockSource_External_Forced：外部时钟源，并且无视锁定情

况，即使失锁也不会切换至内部参考。

ASG_Port_TypeDef Port 信号源输出端口：

ASG_Port_External：外部端口；

ASG_Port_Internal：内部端口。

ASG_Mode_TypeDef Mode 关闭、点频、频率扫描（外触发，同步至接收）、功率扫描（外触发，

同步至接收）：

ASG_Mute：静音；

ASG_FixedPoint：定点；

ASG_FrequencySweep：频率扫描；

ASG_PowerSweep：功率扫描。

ASG_TriggerSource_TypeDef

TriggerSource

信号源触发输入模式：

ASG_TriggerIn_FreeRun：自由运行；

ASG_TriggerIn_External：外触发；

ASG_TriggerIn_Bus：定时器触发。

ASG_TriggerInMode_TypeDef

TriggerInMode

信号源的触发模式：

ASG_TriggerInMode_Null：自由运行；

ASG_TriggerInMode_SinglePoint：单点触发（触发一次进行单次的频率

或功率的配置）；

ASG_TriggerInMode_SingleSweep：单次扫描触发（触发一次进行一个周

期的扫描）；

ASG_TriggerInMode_Continous：连续扫描触发（触发一次连续工作）。

ASG_TriggerOutMode_TypeDef

TriggerOutMode

信号源的触发模式：

ASG_TriggerOutMode_Null：自由运行；

ASG_TriggerOutMode_SinglePoint：单点触发（一次跳频输出一个脉

冲）；

ASG_TriggerOutMode_SingleSweep：单次扫描触发（一次扫描输出一个

脉冲）。

返回值 0：无异常；非0：异常，详见附录1。

API 编程指南 115

调用约束 需要Device_Open后调用。

示例 请参考ASG_Configuration ()函数相关示例。

20.2 ASG_Configuration

int ASG_Configuration(void** Device, ASG_Profile_TypeDef* ProfileIn, ASG_Profile_TypeDef* Pro

fileOut,ASG_Info_TypeDef* ASG_Info)

功能描述

配置 ASG 功能的相关参数。 ASG 模式下的中心频率、功率、驻留时间等参数统一封装在

ASG_Profile_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** Device 设备句柄。

ASG_Profile_TypeDef* ProfileIn ASG配置结构体指针，为输入变量。

请参考ASG_ProfileDeInit ()函数同名结构体参数详细定义。

ASG_Profile_TypeDef* ProfileOut ASG配置结构体指针，为输出变量。

请参考ASG_ProfileDeInit ()函数同名结构体参数详细定义。

ASG_Info_TypeDef* ASG_Info ASG模式下，ASG相关信息，为输出变量。

ASG_Info_TypeDef 详细定义

uint32_t SweepPoints 扫描点数。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要Device_Open后调用。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

ASG_Profile_TypeDef ProfileIn, ProfileOut;

ASG_Info_TypeDef ASG_Info;

Status = ASG_ProfileDeInit(&Device, &ProfileIn);

ProfileIn.CenterFreq_Hz = 1e9;

Status = ASG_Configuration(&Device, &ProfileIn, &ProfileOut, &ASG_Info);

Status = Device_Close(&Device);

API 编程指南 116

21 模拟信号解调 ADM

ADM为模拟调制解调处理接口，用户可调用其中的函数做模解调处理。

21.1 ADM_ Open

void ADM_Open (void** ADM)

功能描述

打开Analog功能，并在内存中分配一定空间以存储Analog的相关数据。在调用Analog的其它函数之前必须

先调用此函数。当需要同时调用某一条函数时，可通过改变多加入几个Analog指针来进行操作。

兼容性 0.55.63及之后版本支持

参数说明

void** ADM 运行Analog所需的内存空间引用。调用此函数后，函数将返回当前打开

的Analog功能的内存地址。后续在调用其它API时，必须通过此引用来索

引此次的地址。

返回值 无。

调用约束 在其它Analog函数调用前调用此函数，且只需在最开始前调用一次即

可，后续其它函数可根据此函数返回的设备内存地址执行相关操作。对

于任何非异常的ADM_Open调用，必须在整个功能使用需求结束之后，

调用ADM_Close函数，以释放内存。

示例 请参考 ADM_AMDemod_PM1 ()函数相关示例。

21.2 ADM_Close

void ADM_Close (void** ADM)

功能描述

关闭Analog功能，释放所开辟的内存空间。

兼容性 0.55.63及之后版本支持

参数说明

void** ADM 运行Analog所需的内存空间引用。

返回值 无。

API 编程指南 117

调用约束 只需在程序执行的最后调用此函数，调用此函数后Analog功能关闭，内

存空间释放。如需要重新调用 Analog 功能，则再次通过调用

ADM_Open，打开Analog功能。

示例 请参考 ADM_AMDemod_PM1 ()函数相关示例。

21.3 ADM_AMDemod

int ADM_AMDemod(void** ADM, const void* AlternIQStream, DataFormat_TypeDef DataFormat,

 uint64_t SamplePoints, double IQSampleRate, float DemodWaveform[])

功能描述

对IQ数据进行AM解调，仅返回解调后的波形。

兼容性 0.55.0及之后版本支持

参数说明

void** ADM 运行Analog所需的内存空间引用。

const void* AlternIQStream 输入IQ数据。

请参考IQS_GetIQStream函数同名结构体参数详细定义。

DataFormat_TypeDef

DataFormat

IQ数据的数据格式。

请参考IQS_ProfileDeInit函数同名结构体参数详细定义。

uint64_t SamplePoints 时域数据长度。

double IQSampleRate IQ单路采样率。

float DemodWaveform[] AM解调后的波形数据，数据长度与IQ信号数据长度相同。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在ADM_Open之后进行调用。

示例 请参考 ADM_AMDemod_PM1 ()函数相关示例。

21.4 ADM_FMDemod

int ADM_FMDemod(void** ADM, const void* AlternIQStream, DataFormat_TypeDef DataFormat,

 uint64_t SamplePoints, double IQSampleRate, bool reset, float DemodWaveform[])

功能描述

对IQ数据进行FM解调。

兼容性 0.55.63及之后版本支持

API 编程指南 118

参数说明

void** ADM 运行Analog所需的内存空间引用。

const void* AlternIQStream 输入IQ数据。

请参考IQS_GetIQStream函数同名结构体参数详细定义。

DataFormat_TypeDef

DataFormat

IQ数据的数据格式。

请参考IQS_ProfileDeInit函数同名结构体参数详细定义。

uint64_t SamplePoints 时域数据长度。

double IQSampleRate IQ采样率。

float DemodWaveform[] FM解调后的波形数据，数据长度与IQ信号数据长度相同。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在ADM_Open之后进行调用。

示例 请参考 ADM_FMDemod_PM1 ()函数相关示例。

21.5 ADM_AMDemod_PM1

int ADM_AMDemod_PM1(void** ADM, const void* AlternIQStream, DataFormat_TypeDef DataF

ormat, uint64_t SamplePoints, double IQSampleRate, float IQS_ScaleToV, AMDemodParam_Type

Def* AMDemodParam)

功能描述

对IQ数据进行AM解调，返回解调后的波形和调制参数。

兼容性 0.55.63及之后版本支持

参数说明

void** ADM 运行Analog所需的内存空间引用。

const void* AlternIQStream 输入IQ数据。

请参考IQS_GetIQStream函数同名结构体参数详细定义。

DataFormat_TypeDef

DataFormat

IQ数据的数据格式。

请参考IQS_ProfileDeInit函数同名结构体参数详细定义。

uint64_t SamplePoints 时域数据长度。

double IQSampleRate IQ采样率。

float IQS_ScaleToV 时域数据至电压绝对值（V）的系数。

AM_DemodParam_TypeDef*

AM_DemodParam

FM解调后返回FM调制信号频率、FM调制频偏等参数。

AM_DemodParam_TypeDef 详细定义

API 编程指南 119

float* DemodWaveform 解调波形 %。

float* AFSpectrum_ModDepth 音频频谱的幅值，长度为DemodWaveformSize / 2，使用线性刻度，单位

为%。

double* AFSpectrum_Freq 音频频谱的频率 Hz。

uint32_t DemodWaveformSize 解调波形的点数。

float ModDepth 调制深度 %。

float ModDepthPeakPos 正峰值的调制深度, Peak+ %。

float ModDepthPeakNeg 负峰值的调制深度平均值, Peak- %。

float ModDepthHalfPeak 半峰值的调制深度平均值, (Peak+ - Peak-)/2 %。

float ModDepthRMS 均方根值的调制深度平均值 %。

float CarrierPower 载波功率 dBm。

double ModRate 调制率 Hz。

float SINAD 信纳德 dB。

float RMSPower 均方根功率 dBm。

double FreqError 频率误差 Hz。

float SNR 信噪比 dB。

float DistTotalVrms 失真电压的占比(RMS) %。

float THD 总谐波失真 %。

float PEP 峰包络功率 dBm。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在ADM_Open之后进行调用。

示例

int Status = 0; void* Device = NULL; int DevNum = 0;

BootProfile_TypeDef BootProfile;

BootInfo_TypeDef BootInfo;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

Status = Device_Open(&Device, DevNum, &BootProfile, &BootInfo);

Device_Open_ErrorHandling(Status, &Device, DevNum, &BootProfile, &BootInfo);

IQStream_TypeDef IQStream

IQS_Profile_TypeDef IQS_ProfileIn;

IQS_Profile_TypeDef IQS_ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &IQS_ProfileIn);

IQS_ProfileIn.CenterFreq_Hz = 1e9;

API 编程指南 120

IQS_ProfileIn.RefLevel_dBm = 0;

IQS_ProfileIn.DataFormat = Complex16bit;

IQS_ProfileIn.TriggerMode = FixedPoints;

IQS_ProfileIn.TriggerSource = Bus;

IQS_ProfileIn.DecimateFactor = 256;

IQS_ProfileIn.BusTimeout_ms = 5000;

IQS_ProfileIn.TriggerLength = 16242 * 1;

Status = IQS_Configuration(&Device, &IQS_ProfileIn, &IQS_ProfileOut, &StreamInfo);

IQS_Configuration_ErrorHandling(Status, &Device, DevNum, &BootProfile, &BootInfo, &IQS_ProfileIn, &IQS_Pr

ofileOut, &StreamInfo);

AMDemodParam_TypeDef AMDemodParam; //Demod

void* ADM = nullptr;

ADM_Open(&ADM);

vector<int16_t> IQ(StreamInfo.StreamSamples * 2);

vector<float> DemodWaveform(IQS_ProfileIn.TriggerLength);

while (1){

uint32_t Points = StreamInfo.PacketSamples;

Status = IQS_BusTriggerStart(&Device);

for (uint32_t i = 0; i < StreamInfo.PacketCount; i++){

Status = IQS_GetIQStream_PM1(&Device, &IQStream);

if (Status) {

std::cout << "IQS_GetIQStream_PM1: " << Status << std::endl;

}

else {

if (i == StreamInfo.PacketCount - 1 && StreamInfo.StreamSamples % StreamInfo.PacketSamples != 0){

Points = StreamInfo.StreamSamples % StreamInfo.PacketSamples;

}

memcpy(IQ.data() + i * StreamInfo.PacketSamples * 2, IQStream.AlternIQStream, Points * 2 * sizeof(IQ

[0]));

}

}

IQStream.AlternIQStream = IQ.data();

ADM_AMDemod(&ADM, IQStream.AlternIQStream, IQStream.IQS_Profile.DataFormat, IQStream.IQS_Profil

e.TriggerLength, IQStream.IQS_StreamInfo.IQSampleRate, DemodWaveform.data());

ADM_AMDemod_PM1(&ADM, IQStream.AlternIQStream, IQStream.IQS_Profile.DataFormat, IQStream.IQS_

Profile.TriggerLength, IQStream.IQS_StreamInfo.IQSampleRate, IQStream.IQS_ScaleToV, &AMDemodParam);}

ADM_Close(&ADM);

Status = Device_Close(&Device);

API 编程指南 121

21.6 ADM_FMDemod_PM1

int ADM_FMDemod_PM1(void** ADM, const void* AlternIQStream, DataFormat_TypeDef DataFo

rmat, uint64_t SamplePoints, double IQSampleRate, float IQS_ScaleToV, bool reset, FMDemodPar

am_TypeDef* FMDemodParam)

功能描述

对IQ数据进行FM解调，返回解调后的波形和调制参数。

兼容性 0.55.63及之后版本支持

参数说明

void** ADM 运行Analog所需的内存空间引用。

const void* AlternIQStream 输入IQ数据。

请参考IQS_GetIQStream函数同名结构体参数详细定义。

DataFormat_TypeDef

DataFormat

IQ数据的数据格式。

请参考IQS_ProfileDeInit函数同名结构体参数详细定义。

uint64_t SamplePoints 时域数据长度。

double IQSampleRate IQ采样率。

float IQS_ScaleToV 时域数据至电压绝对值（V）的系数。

bool reset 重置缓存，对于一次连接解调来说，只有第一次调用函数的时候需要置

成1，后面都是置0。

FMDemodParam_TypeDef*

FMDemodParam

FM解调后返回FM调制信号频率、FM调制频偏等参数。

FM_DemodParam_TypeDef 详细定义

float* DemodWaveform 解调波形 Hz。

float* AFSpectrum_Deviation 音频频谱的幅值，长度为DemodWaveformSize / 2，使用线性刻度，单位

为Hz。

double* AFSpectrum_Freq 音频频谱的频率 Hz。

uint32_t DemodWaveformSize 解调波形的点数。

float Deviation 调制频偏 Hz。

float DeviationPeakPos 正峰值的调制频偏, Peak+ Hz。

float DeviationPeakNeg 负峰值的调制频偏平均值, Peak- Hz。

float DeviationHalfPeak 半峰值的调制频偏平均值, (Peak+ - Peak-)/2 Hz。

float DeviationRMS 均方根值的调制频偏平均值 Hz。

float CarrierPower 载波功率 dBm。

API 编程指南 122

double CarrierFreqErr 载波频偏 Hz。

double ModRate 调制率 Hz。

float SINAD 信纳德 dB。

float SNR 信噪比 dB。

float DistTotalVrms 失真占总有效值比(RMS) %。

float THD 总谐波失真 %。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在ADM_Open之后进行调用。

示例

int Status = 0;void* Device = NULL;int DevNum = 0;

BootProfile_TypeDef BootProfile;

BootInfo_TypeDef BootInfo;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

Status = Device_Open(&Device, DevNum, &BootProfile, &BootInfo);

Device_Open_ErrorHandling(Status, &Device, DevNum, &BootProfile, &BootInfo);

IQStream_TypeDef IQStream;

IQS_Profile_TypeDef IQS_ProfileIn;

IQS_Profile_TypeDef IQS_ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &IQS_ProfileIn);

IQS_ProfileIn.CenterFreq_Hz = 1e9

IQS_ProfileIn.RefLevel_dBm = 0;

IQS_ProfileIn.DataFormat = Complex16bit;

IQS_ProfileIn.TriggerMode = FixedPoints;

IQS_ProfileIn.TriggerSource = Bus;

IQS_ProfileIn.DecimateFactor = 256;

IQS_ProfileIn.BusTimeout_ms = 5000;

IQS_ProfileIn.TriggerLength = 16242 * 1;

Status = IQS_Configuration(&Device, &IQS_ProfileIn, &IQS_ProfileOut, &StreamInfo);

IQS_Configuration_ErrorHandling(Status, &Device, DevNum, &BootProfile, &BootInfo, &IQS_ProfileIn, &IQS_Pr

ofileOut, &StreamInfo);

FMDemodParam_TypeDef FMDemodParam; //Demod

void* ADM = nullptr;

ADM_Open(&ADM);

vector<int16_t> IQ(StreamInfo.StreamSamples * 2);

API 编程指南 123

vector<float> DemodWaveform(IQS_ProfileIn.TriggerLength);

while (1){

uint32_t Points = StreamInfo.PacketSamples;

Status = IQS_BusTriggerStart(&Device);

for (uint32_t i = 0; i < StreamInfo.PacketCount; i++){

Status = IQS_GetIQStream_PM1(&Device, &IQStream);

if (Status) {

std::cout << "IQS_GetIQStream_PM1: " << Status << std::endl;

}

else {

if (i == StreamInfo.PacketCount - 1 && StreamInfo.StreamSamples % StreamInfo.PacketSamples != 0){

Points = StreamInfo.StreamSamples % StreamInfo.PacketSamples;

}

memcpy(IQ.data() + i * StreamInfo.PacketSamples * 2, IQStream.AlternIQStream, Points * 2 * sizeof(IQ

[0]));

}

}

IQStream.AlternIQStream = IQ.data();

ADM_FMDemod(&ADM, IQStream.AlternIQStream, IQStream.IQS_Profile.DataFormat, IQStream.IQS_Profil

e.TriggerLength, IQStream.IQS_StreamInfo.IQSampleRate, true,DemodWaveform.data());

ADM_FMDemod_PM1(&ADM, IQStream.AlternIQStream, IQStream.IQS_Profile.DataFormat, IQStream.IQS_P

rofile.TriggerLength, IQStream.IQS_StreamInfo.IQSampleRate, IQStream.IQS_ScaleToV, true, &FMDemodPara

m);}

ADM_Close(&ADM);

Status = Device_Close(&Device);

API 编程指南 124

22 数字信号处理 DSP 迹线分析

22.1 DSP_TraceAnalysis_IM3

int DSP_TraceAnalysis_IM3(const double Freq_Hz [], const float PowerSpec_dBm[],const uint32_t

TracePoints, TraceAnalysisResult_IP3_TypeDef* IM3Result)

功能描述

分析迹线的 IM3 参数。

兼容性 0.55.0及之后版本支持

参数说明

const double Freq_Hz [] 输入的频率数组。

const float PowerSpec_dBm[] 输入的功率数组。

const uint32_t TracePoints 迹线点数，即两个输入数组的长度。

TraceAnalysisResult_IP3_TypeDef

* IM3Result

返回IP3的测量结果。

TraceAnalysisResult_IP3_TypeDef 详细定义

double LowToneFreq 低音信号频率，单位随数据源。

double HighToneFreq 高音信号频率，单位随数据源。

double LowIM3PFreq 低频交调频率，单位随数据源。

double HighIM3PFreq 高频交调频率，单位随数据源。

float LowTonePower_dBm 低音功率, dBm。

float HighTonePower_dBm 高音功率, dBm。

float TonePowerDiff_dB 低音功率 - 高音功率。

float LowIM3P_dBc LowIM3P_dBc = max(LowTonePower_dBm, HighTonePower_dBm) -

LowTonePower_dBm, 低频交调产物相对于最强主信号的强度。

float HighIM3P_dBc HighIM3P_dBc = max(LowTonePower_dBm, HighTonePower_dBm) -

HighTonePower_dBm, 高频交调产物相对于最强主信号的强度。

float IP3_dBm IP3的测试结果。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

API 编程指南 125

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn, ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

TraceAnalysisResult_IP3_TypeDef IM3Result;

Status = DSP_TraceAnalysis_IM3(Frequency.data(), PowerSpec_dBm.data(), TraceInfo.FullsweepTracePoints, &I

M3Result);

Status = Device_Close(&Device);

22.2 DSP_TraceAnalysis_IM2

int DSP_TraceAnalysis_IM2(const double Freqs[], const float PowerSpec_dBm[], uint32_t TracePoi

nts, TraceAnalysisResult_IP2_TypeDef* IM2Result)

功能描述

分析迹线的 IM2 参数。

兼容性 0.55.0及之后版本支持

参数说明

double Freqs[] 输入的频率数组。

float PowerSpec_dBm[] 输入的功率数组。

uint32_t TracePoints 迹线点数，即两个输入数组的长度。

TraceAnalysisResult_IP2_TypeDef

* IM2Result

返回IP2的测量结果。

TraceAnalysisResult_IP2_TypeDef 详细定义

double LowToneFreq 低音信号频率，单位随数据源。

double HighToneFreq 高音信号频率，单位随数据源。

double IM2PFreq 低频交调频率，单位随数据源。

float LowTonePower_dBm 低音功率, dBm。

API 编程指南 126

float HighTonePower_dBm 高音功率, dBm。

float TonePowerDiff_dB 低音功率 - 高音功率。

float IM2P_dBc IM2P_dBc = max(LowTonePower_dBm, HighTonePower_dBm) - IM2P_dBm,

低频交调产物相对于最强主信号的强度。

float IP2_dBm IP2的测试结果。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL; uint8_t IfDoConfig = 1;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn, ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

SWP_AutoSet(&Device, SWPChannelPowerMeas, &ProfileIn, &ProfileOut, &TraceInfo, IfDoConfig);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

TraceAnalysisResult_IP2_TypeDef IM2Result;

Status = DSP_TraceAnalysis_IM2(Frequency.data(), PowerSpec_dBm.data(), TraceInfo.FullsweepTracePoints, &I

M2Result);

Status = Device_Close(&Device);

22.3 DSP_TraceAnalysis_ChannelPower

int DSP_TraceAnalysis_ChannelPower(const double Freq_Hz[], const float PowerSpec_dBm[], con

st uint32_t TracePoints, const double CenterFrequency, const double AnalysisSpan, const double R

BW, DSP_ChannelPowerInfo_TypeDef* ChannelPowerResult)

功能描述

分析迹线的信道功率。

API 编程指南 127

兼容性 0.55.0及之后版本支持

参数说明

const double Freq_Hz[] 输入的频率数组。

const float PowerSpec_dBm[] 输入的功率数组。

const uint32_t TracePoints 迹线点数，即两个输入数组的长度。

const double CenterFrequency 需要测量的信道中心频率。

const double AnalysisSpan 需要测量的信道带宽。

const double RBW 分辨率带宽。

DSP_ChannelPowerInfo_TypeDef

* ChannelPowerResult

返回信道功率的测量结果。

DSP_ChannelPowerInfo_TypeDef 详细定义

float ChannelPower_dBm 信道功率(dBm)。

float PowerDensity 信道功率密度(dBm/Hz)。

float ChannelPeakIndex 信道内的峰值索引。

double ChannelPeakFreq_Hz 信道内的峰值频率(Hz）。

float ChannelPeakPower_dBm 信道内的峰值功率(dBm）。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn, ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

uint8_t IfDoConfig = 1;

SWP_AutoSet(&Device, SWPChannelPowerMeas, &ProfileIn, &ProfileOut, &TraceInfo, IfDoConfig);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

API 编程指南 128

double CenterFrequency = 1e9; double AnalysisSpan = 50e6;

DSP_ChannelPowerInfo_TypeDef ChannelPowerResult; double RBW ;

Status = DSP_TraceAnalysis_ChannelPower(Frequency.data(), PowerSpec_dBm.data(), TraceInfo.FullsweepTrace

Points, CenterFrequency, AnalysisSpan, ProfileOut.RBW_Hz, &ChannelPowerResult);

Status = Device_Close(&Device);

22.4 DSP_TraceAnalysis_XdBBW

int DSP_TraceAnalysis_XdBBW(const double Freq_Hz[], const float PowerSpec_dBm[], const uint3

2_t TracePoints, const float XdB, TraceAnalysisResult_XdB_TypeDef* XdBResult)

功能描述

分析迹线的 XdB带宽。

兼容性 0.55.0及之后版本支持

参数说明

const double Freq_Hz[] 输入的频率数组。

const float PowerSpec_dBm[] 输入的功率数组。

const uint32_t TracePoints 迹线点数，即两个输入数组的长度。

const float XdB 峰值功率需要下降的dB。

TraceAnalysisResult_XdB_TypeD

ef* XdBResult

返回XdB的测量结果。

TraceAnalysisResult_XdB_TypeDef 详细定义

double XdBBandWidth_Hz XdB带宽(Hz)。

double CenterFreq_Hz XdB带宽的中心频率(Hz)。

double StartFreq_Hz XdB带宽的起始频率(Hz)。

double StopFreq_Hz XdB带宽的终止频率(Hz)。

float StartPower_dBm XdB带宽的起始频率对应的功率(dBm)。

float StopPower_dBm XdB带宽的终止频率对应的功率(dBm)。

uint32_t PeakIndex XdB带宽内的峰值索引。

double PeakFreq_Hz XdB带宽内的峰值频率(Hz）。

float PeakPower_dBm XdB带宽内的峰值功率(dBm)。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

API 编程指南 129

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn, ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

TraceAnalysisResult_XdB_TypeDef XdBResult; float XdB = 3;

Status = DSP_TraceAnalysis_XdBBW(Frequency.data(), PowerSpec_dBm.data(), TraceInfo.FullsweepTracePoints,

 XdB, &XdBResult);

Status = Device_Close(&Device);

22.5 DSP_TraceAnalysis_OBW

int DSP_TraceAnalysis_OBW(const double Freq_Hz[], const float PowerSpec_dBm[], const uint32_

t TracePoints, const float OccupiedRatio, TraceAnalysisResult_OBW_TypeDef* OBWResult)

功能描述

分析迹线的 占用带宽。

兼容性 0.55.0及之后版本支持

参数说明

const double Freq_Hz[] 输入的频率数组。

const float PowerSpec_dBm[] 输入的功率数组。

uint32_t TracePoints 迹线点数，即两个输入数组的长度。

float OccupiedRatio 需要测试的占用带宽比例，通常情况下设置为0.99。

TraceAnalysisResult_OBW_Type

Def* OBWResult

返回占用带宽的测量结果。

TraceAnalysisResult_OBW_TypeDef 详细定义

double OccupiedBandWidth 占用带宽(Hz)。

double CenterFreq_Hz 占用带宽的中心频率(Hz)。

API 编程指南 130

double StartFreq_Hz 占用带宽的起始频率(Hz)。

double StopFreq_Hz 占用带宽的终止频率(Hz)。

float StartPower_dBm 占用带宽的起始频率对应的功率(dBm)。

float StopPower_dBm 占用带宽的终止频率对应的功率(dBm)。

float StartRatio 占用带宽的起始频率对应的功率占比。

float StopRatio 占用带宽的终止频率对应的功率占比。

uint32_t PeakIndex 占用带宽内的峰值索引。

double PeakFreq_Hz 占用带宽内的峰值频率(Hz）。

float PeakPower_dBm 占用带宽内的峰值功率(dBm)。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn, ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

TraceAnalysisResult_OBW_TypeDef OBWResult; float OccupiedRatio = 0.99;

Status = DSP_TraceAnalysis_OBW(Frequency.data(), PowerSpec_dBm.data(), TraceInfo.FullsweepTracePoints, O

ccupiedRatio, &OBWResult);

Status = Device_Close(&Device);

22.6 DSP_TraceAnalysis_ACPR

int DSP_TraceAnalysis_ACPR(const double Freq_Hz[], const float PowerSpec_dBm[], const uint32_

t TracePoints, const DSP_ACPRFreqInfo_TypeDef ACPRFreqInfo, TraceAnalysisResult_ACPR_TypeD

ef* ACPRResult)

API 编程指南 131

功能描述

分析迹线的 邻道功率比。

兼容性 0.55.0及之后版本支持

参数说明

const double Freq_Hz[] 输入的频率数组。

const float PowerSpec_dBm[] 输入的功率数组。

const uint32_t TracePoints 迹线点数，即两个输入数组的长度。

const DSP_ACPRFreqInfo_TypeDef

ACPRFreqInfo

测试邻道功率比需要给定的变量。

TraceAnalysisResult_ACPR_TypeDe

f* ACPRResult

返回邻道功率比的测量结果。

DSP_ACPRFreqInfo_TypeDef 详细定义

double RBW 分辨率带宽(Hz)。

double MainChCenterFreq_Hz 主信道中心频率(Hz)。

double MainChBW_Hz 主信道带宽(Hz)。

double AdjChSpace_Hz 邻道间隔，主信道中心频率与邻道中心频率的差值(Hz)。

uint32_t AdjChPair 邻道对。1代表左右2个邻道，2代表左右4个邻道。

TraceAnalysisResult_ACPR_TypeDef 详细定义

float MainChPower_dBm 主信道功率(dBm)。

uint32_t MainChPeakIndex 主信道的峰值索引。

double MainChPeakFreq_Hz 主信道的峰值频率(Hz）。

float MainChPeakPower_dBm 主信道峰值功率(dBm)。

double L_AdjChCenterFreq_Hz 左邻道中心频率(Hz)。

double L_AdjChBW_Hz 左邻道带宽(Hz)。

float L_AdjChPower_dBm 左邻道功率(dBm)。

float L_AdjChPowerRatio 左邻道功率比（左邻道功率/主信道功率）。

float L_AdjChPowerDiff_dBc 左邻道功率差（左邻道功率-主信道功率 dBc）。

float L_AdjChPeakIndex 左邻道的峰值索引。

double L_AdjChPeakFreq_Hz 左信道的峰值频率(Hz）。

float L_AdjChPeakPower_dBm 左邻道的值功率(dBm)。

double R_AdjChCenterFreq_Hz 右邻道中心频率(Hz)。

double R_AdjChBW_Hz 右邻道带宽(Hz)。

float R_AdjChPower_dBm 右邻道功率(dBm)。

API 编程指南 132

float R_AdjChPowerRatio 右邻道功率比（右邻道功率/主信道功率）。

float R_AdjChPowerDiff_dBc 右邻道功率差（右邻道功率-主信道功率 dBc）。

float R_AdjChPeakIndex 右邻道的峰值索引。

double R_AdjChPeakFreq_Hz 右信道的峰值频率(Hz）。

float R_AdjChPeakPower_dBm 右邻道的值功率(dBm)。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef ProfileIn, ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

Status = SWP_ProfileDeInit(&Device, &ProfileIn);

Status = SWP_Configuration(&Device, &ProfileIn, &ProfileOut, &TraceInfo);

vector<double> Frequency(TraceInfo.FullsweepTracePoints);

vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

DSP_ACPRFreqInfo_TypeDef ACPRFreqInfo;

ACPRFreqInfo.RBW = ProfileOut.RBW_Hz;

ACPRFreqInfo.MainChCenterFreq_Hz = 1e9;

ACPRFreqInfo.MainChBW_Hz = 50e6;

ACPRFreqInfo.AdjChSpace_Hz = 50e6;

ACPRFreqInfo.AdjChPair = 2;

TraceAnalysisResult_ACPR_TypeDef ACPRPowerInfo;

vector<TraceAnalysisResult_ACPR_TypeDef> ACPRResult(ACPRFreqInfo.AdjChPair);

Status = DSP_TraceAnalysis_ACPR(Frequency.data(), PowerSpec_dBm.data(), TraceInfo.FullsweepTracePoints, A

CPRFreqInfo, ACPRResult.data());

Status = Device_Close(&Device);

API 编程指南 133

22.7 DSP_SEMAnalysis

int DSP_SEMAnalysis(const DSP_SEMProfile_TypeDef* semProfile, const double Freq_Hz[], const f

loat PowerSpec_dBm[], const uint32_t TracePoints, const double CenterFreq, DSP_SEMResult_Typ

eDef* SEMResult)

功能描述

对频谱数据执行发射模板分析。

兼容性 0.55.62及之后版本支持

参数说明

const DSP_SEMProfile_TypeDef*

semProfile

SEM模版参考线配置。

const double Freq_Hz[] 输入的频率数组。

const float PowerSpec_dBm[] 输入的功率数组。

const uint32_t TracePoints 输入迹线点数。

const double CenterFreq 输入的中心频率。

DSP_SEMResult_TypeDef*

SEMResult

返回SEM所有线段的测量结果。

DSP_SEMProfile_TypeDef 详细定义

int mRefSetType 参考设置方式。

mRefSetType =0： 峰值参考；

mRefSetType = 1：手动参考。

float mManualRefLevel 当mRefSetType = 1时，手动设置参考门限。

DSP_SEMSegmentProfile_TypeDef

mSegments[16]

配置每一段参考线的开始/截止频率、开始/截止门限等，最多有16段

线。

DSP_SEMSegmentProfile_TypeDef 详细定义

bool mState 开启/关闭SEM功能

关闭=0； 使能 =1

double mStartFreq 开始频率。

double mLimitStart 开始门限。

double mStopFreq 截止频率。

double mLimitStop 截止门限。

int mMode 绝对 = 0; 相对 = 1。

int mPriority 要求 = 0； 建议 = 1。

API 编程指南 134

DSP_SEMResult_TypeDef 详细定义

DSP_SEMSegmentResult_TypeDef

mSegmentResults[16]

返回SEM测量的结果。

DSP_SEMProfile_TypeDef mProfile 返回SEM测量时的配置。

float mRefLevel 返回SEM测量时采用的参考。

DSP_SEMSegmentResult_TypeDef 详细定义

double mLowerFreq 低端频率。

float mLowerLevel 低端电平。

float mLowerMargin 低端余量。

bool mLowerPassOrFail 低端通过、失败。 0：通过；1：失败。

double mUpperFreq 高端频率。

float mUpperLevel 高端电平。

float mUpperMargin 高端余量。

bool mUpperPassOrFail 高端通过、失败。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 无

示例

int Status = 0; void* Device = NULL; int DevNum = 0;

BootProfile_TypeDef BootProfile;

BootInfo_TypeDef BootInfo;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

Status = Device_Open(&Device, DevNum, &BootProfile, &BootInfo);

SWP_Profile_TypeDef SWP_ProfileIn;

SWP_Profile_TypeDef SWP_ProfileOut;

SWP_TraceInfo_TypeDef TraceInfo;

SWP_ProfileDeInit(&Device, &SWP_ProfileIn);

//参数配置可根据实际信号和频谱发射模板适当调整。

SWP_ProfileIn.FreqAssignment = CenterSpan;

SWP_ProfileIn.CenterFreq_Hz = 1e9;

SWP_ProfileIn.Span_Hz = 60e6;

SWP_ProfileIn.RefLevel_dBm = -20;

SWP_ProfileIn.RBWMode = RBW_Manual;

SWP_ProfileIn.RBW_Hz = 5e3;

SWP_ProfileIn.VBWMode = VBW_TenPercentRBW;

API 编程指南 135

SWP_ProfileIn.Detector = Detector_Average;

SWP_ProfileIn.SpurRejection = Enhanced;

SWP_ProfileIn.SweepTimeMode = SWTMode_minSWTx20;

Status = SWP_Configuration(&Device, &SWP_ProfileIn, &SWP_ProfileOut, &TraceInfo);

std::vector<double >Frequency(TraceInfo.FullsweepTracePoints);

std::vector<float> PowerSpec_dBm(TraceInfo.FullsweepTracePoints);

while (1){

MeasAuxInfo_TypeDef MeasAuxInfo;

Status = SWP_GetFullSweep(&Device, Frequency.data(), PowerSpec_dBm.data(), &MeasAuxInfo);

if (Status == APIRETVAL_NoError){

// 以 802.11n（20MHz）频谱发射模板为例

DSP_SEMProfile_TypeDef semProfile = { 0, 0, { {true, 9e6, 0, 11e6, -20, 1, 0}, {true, 11e6, -20, 20e6, -28, 1,

0}, {true, 20e6, -28, 30e6, -40, 1, 0} } };

DSP_SEMResult_TypeDef result;

Status = DSP_SEMAnalysis(&semProfile, Frequency.data(), PowerSpec_dBm.data(), TraceInfo.FullsweepTra

cePoints, SWP_ProfileOut.CenterFreq_Hz, &result);

 // i < 3 表示 semProfile 中 mSegments[16] 仅使能了 3 组数据。注意：0：通过；1：失败！！！

for (int i = 0; i < 3; i++) {

std::cout << "low: " << result.mSegmentResults->mLowerPassOrFail << ", high: " << result.mSegmentRes

ults->mUpperPassOrFail << std::endl;

}

}

}

Device_Close(&Device);/*关闭设备*/

API 编程指南 136

23 数字信号处理 DSP 流数据的分析与处理

23.1 DSP_Open

int DSP_Open(void** DSP)

功能描述

打开DSP功能，并在内存中分配一定空间以存储DSP的相关数据。在调用DSP的其它函数之前必须先调用此

函数。当需要同时调用某一条函数时，可通过改变多加入几个DSP指针来进行操作。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。调用此函数后，函数将返回当前打开的

DSP功能的内存地址。后续在调用其它API时，必须通过此引用来索引此

次的地址。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 必须在其它DSP函数调用前调用此函数，且只需在最开始前调用一次即

可，后续其它函数可根据此函数返回的设备内存地址执行相关操作。对

于任何非异常的DSP_Open调用，必须在整个功能使用需求结束之后，调

用DSP_Close函数，以释放内存。

示例 请参考DSP_DDC_Execute()函数相关示例。

23.2 DSP_Close

int DSP_Close(void** DSP)

功能描述

关闭DSP功能，释放所开辟的内存空间。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 只需在程序执行的最后调用此函数，调用此函数后DSP功能关闭，内存

空间释放，如需要重新调用DSP功能。则需要再次通过调用DSP_Open，

打开DSP功能。

API 编程指南 137

示例 请参考DSP_DDC_Execute()函数相关示例。

23.3 DSP_FFT_DeInit

int DSP_FFT_DeInit(DSP_FFT_TypeDef* IQToSpectrum)

功能描述

初始化配置 FFT模式的相关参数。 FFT模式下的 FFT点数、窗型、抽取倍数等参数统一封装在

DSP_FFT_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

DSP_FFT_TypeDef*

IQToSpectrum

DSP_FFT配置结构体指针，为输入/输出变量。

DSP_FFT_TypeDef 详细定义

uint32_t FFTSize FFT分析点数。

uint32_t SamplePts 有效采样点数。

Window_TypeDef Window 指定FFT分析所使用的窗函数：

FlatTop：具有良好的幅度准确度；

Blackman_Nuttall：具有良好的频率分辨力；

LowSideLobe：低副瓣窗。

TraceDetector_TypeDef

TraceDetector

设置迹线检波器类型：

TraceDetector_AutoSample：自动取样检波；

TraceDetector_Sample：取样检波；

TraceDetector_PosPeak：正峰值检波；

TraceDetector_NegPeak：负峰值检波；

TraceDetector_RMS：均方根检波；

TraceDetector_Bypass：不执行检波；

TraceDetector_AutoPeak：自动峰值检波。

uint32_t DetectionRatio 迹线检波比。

float Intercept 设置输出频谱截取，例如 Intercept = 0.8 则表示输出 80%的频谱结果。

bool Calibration 设置是否进行校准。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在DSP_FFT_Configuration前调用。

示例 请参考DSP_FFT_IQSToSpectrum ()函数相关示例。

API 编程指南 138

23.4 DSP_FFT_Configuration

int DSP_FFT_Configuration(void** DSP, const DSP_FFT_TypeDef* ProfileIn, DSP_FFT_TypeDef* Pr

ofileOut, uint32_t* TracePoints, double* RBWRatio)

功能描述

配置FFT模式的相关参数。FFT模式下的FFT点数、窗型、抽取倍数等参数统一封装在DSP_FFT_TypeDef结构

体中。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

const DSP_FFT_TypeDef*

ProfileIn

DSP_FFT配置结构体指针，为输入变量。

请参考DSP_FFT_DeInit ()函数同名结构体参数详细定义。

DSP_FFT_TypeDef* ProfileOut DSP_FFT配置结构体指针，为输出变量。

请参考DSP_FFT_DeInit ()函数同名结构体参数详细定义。

uint32_t TracePoints 当前DSP_FFT配置下可获取到的频谱点数。

double *RBWRatio 返回RBW相对于采样率的比值。RBW = RBWRatio * IQSampleRate

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DSP_FFT_DeInit之后进行调用。

示例 请参考DSP_FFT_IQSToSpectrum ()函数相关示例。

23.5 DSP_FFT_IQSToSpectrum

int DSP_FFT_IQSToSpectrum(void** DSP_FFT, const IQStream_TypeDef* IQStream, double Freq_H

z[], float PowerSpec_dBm[])

功能描述

将IQ数据转换成频谱数据，包括频率和功率。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

const IQStream_TypeDef*

IQStream

IQ数据流的相关信息，包括IQ数据及相关配置信息。

请参考IQS_GetIQStream_PM1()函数同名结构体参数详细定义。

API 编程指南 139

double Freq_Hz[] 返 回 频 谱 数 据 的 频 率 数 组 。 数 组 大 小 为 TracePoints ， 由

DSP_FFT_Configuration()函数输出得到。

float PowerSpec_dBm[] 返 回 频 谱 数 据 的 功 率 数 组 。 数 组 大 小 为 TracePoints ， 由

DSP_FFT_Configuration()函数输出得到。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DSP_FFT_Configuration之后进行调用。

示例

void* Device = NULL;int DeviceNum = 0;int Status = -1;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn, ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

IQStream_TypeDef IQStream;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

vector<int16_t> AlternIQStream(StreamInfo.StreamSamples * 2);

void* DSP = NULL; uint32_t TracePoints = 0; double RBWRatio = 0;

Status = DSP_Open(&DSP);

DSP_FFT_TypeDef FFT_ProfileIn, FFT_ProfileOut;

Status = DSP_FFT_DeInit(&FFT_ProfileIn);

Status = DSP_FFT_Configuration(&DSP, &FFT_ProfileIn, &FFT_ProfileOut, &TracePoints, &RBWRatio);

vector<double> Frequency(TracePoints);

vector<float> PowerSpec_dBm(TracePoints);

Status = IQS_BusTriggerStart(&Device);

Status = IQS_GetIQStream_PM1(&Device, &IQStream);

Status = DSP_FFT_IQSToSpectrum(&DSP, &IQStream, Frequency.data(), PowerSpec_dBm.data());

Status = IQS_BusTriggerStop(&Device);

Status = DSP_Close(&DSP);

Status = Device_Close(&Device);

API 编程指南 140

23.6 DSP_DDC_DeInit

int DSP_DDC_DeInit(DSP_DDC_TypeDef* DDC_ProfileIn)

功能描述

初始化DDC模式的相关参数。DDC模式下的复混频和重采样参数统一封装在DSP_DDC_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

DSP_DDC_TypeDef*

DDC_ProfileIn

DSP_DDC配置结构体指针，为输入/输出变量。

DSP_DDC_TypeDef 详细定义

double DDCOffsetFrequency 设置复混频的频率偏移值。

double SampleRate 设置复混频的采样率，需要与IQ数据采样率相同。

float DecimateFactor 设置重采样抽取倍数，范围:1 ~ 2^16。

uint64_t SamplePoints 设置复混频的采样点数。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 在DSP_DDC_Configuration前调用。

示例 请参考DSP_DDC_Execute()函数相关示例。

23.7 DSP_DDC_Configuration

int DSP_DDC_Configuration(void** DSP, const DSP_DDC_TypeDef* DDC_ProfileIn, DSP_DDC_Type

Def* DDC_ProfileOut)

功能描述

配置DDC模式的相关参数。DDC模式下的复混频和重采样参数统一封装在DSP_DDC_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

const DSP_DDC_TypeDef*

ProfileIn

DSP_DDC配置结构体指针，为输入变量。

请参考DSP_DDC_DeInit ()函数同名结构体参数详细定义。

DSP_DDC_TypeDef* ProfileOut DSP_DDC配置结构体指针，为输出变量。

请参考DSP_DDC_DeInit ()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DSP_DDC_DeInit之后进行调用。

API 编程指南 141

示例 请参考DSP_DDC_Execute()函数相关示例。

23.8 DSP_DDC_Reset

void DSP_DDC_Reset(void** DSP)

功能描述

重置DDC中的缓存。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

返回值 无。

调用约束 需要在DSP_Open之后进行调用。

示例 请参考DSP_DDC_Execute()函数相关示例。

23.9 DSP_DDC_GetDelay

void DSP_DDC_GetDelay (void** DSP, uint32_t* delay)

功能描述

获取DDC的延时。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

uint32_t* delay 返回抽取滤波器的延时点数。

返回值 无。

调用约束 需要在DSP_DDC_Configuration之后进行调用。

示例 请参考DSP_DDC_Execute()函数相关示例。

23.10 DSP_DDC_Execute

int DSP_DDC_Execute(void** DSP, const IQStream_TypeDef* IQStreamIn, IQStream_TypeDef* IQS

treamOut)

功能描述

将IQ数据进行数字下变频。

API 编程指南 142

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

const IQStream_TypeDef*

IQStreamIn

输入IQ数据流的相关信息，包括IQ数据及相关配置信息。

请参考IQS_GetIQStream_PM1()函数同名结构体参数详细定义。

IQStream_TypeDef*

IQStreamOut

输出IQ数据流的相关信息，包括IQ数据及相关配置信息。

请参考IQS_GetIQStream_PM1()函数同名结构体参数详细定义。

返回值 0：无异常；非0：异常，详见附录1。

调用约束 需要在DSP_DDC_Configuration之后进行调用。

示例

int Status = -1;void* DSP = NULL;void* Device = NULL; int DeviceNum = 0;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn;

IQS_Profile_TypeDef ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

IQStream_TypeDef IQStream;

IQStream_TypeDef IQStreamOut;

Status = IQS_BusTriggerStart(&Device);

Status = IQS_GetIQStream_PM1(&Device, &IQStream);

Status = IQS_BusTriggerStop(&Device);

Status = DSP_Open(&DSP);

DSP_DDC_TypeDef DDC_ProfileIn, DDC_ProfileOut;

Status = DSP_DDC_DeInit(&DDC_ProfileIn);

uint32_t DDC_Points = 0;

Status = DSP_DDC_Configuration(&DSP, &DDC_ProfileIn, &DDC_ProfileOut);

uint32_t delay;

DSP_DDC_GetDelay(&DSP, &delay);

//若每次做解调的 IQ 数据不是连续的，则需要先调用 DSP_DDC_Reset，再调用 DSP_DDC_Excute

DSP_DDC_Reset(&DSP);

Status = DSP_DDC_Execute(&DSP, &IQStream, &IQStreamOut);

API 编程指南 143

Status = DSP_Close(&DSP);

Status = Device_Close(&Device);

23.11 DSP_AudioAnalysis

void DSP_AudioAnalysis(const double Audio[], const uint64_t SamplePoints, const double Sample

Rate, DSP_AudioAnalysis_TypeDef* AudioAnalysis)

功能描述

分析音频的 音频电压(V)、音频频率(Hz)、信纳德(dB)和总谐波失真(%) 参数。

兼容性 0.55.0及之后版本支持

参数说明

const double Audio[] 音频信号数组。

const uint64_t SamplePoints 音频信号数组的长度。

const double SampleRate 音频信号的采样率。

DSP_AudioAnalysis_TypeDef*

AudioAnalysis

返回音频分析的测量结果。

DSP_AudioAnalysis_TypeDef 详细定义

double AudioVoltage 音频电压(V)。

double AudioFrequency 音频频率(Hz)。

double SINDA 信纳德(dB)。

double THD 总谐波失真(%)。

返回值 无。

调用约束 无。

示例

int Status = -1; int DeviceNum = 0; void* Device = NULL;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn, ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device, &ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

IQStream_TypeDef IQStream;

API 编程指南 144

void* AnalogMod = NULL;

ASD_Open(&AnalogMod);

bool reset = 1;

vector<float> result(StreamInfo.PacketSamples);

FM_DemodParam_TypeDef FM_DemodParam;

void* DSP = NULL;

DSP_Open(&DSP);

Status = IQS_BusTriggerStart(&Device);

DSP_AudioAnalysis_TypeDef AudioAnalysis;

Status = IQS_GetIQStream_PM1(&Device, &IQStream);

Status = ASD_FMDemodulation(&AnalogMod, &IQStream, reset, result.data(), &FM_DemodParam);

vector<double> Audio(result.begin(), result.end());

DSP_AudioAnalysis(Audio.data(), StreamInfo.PacketSamples, StreamInfo.IQSampleRate, &AudioAnalysis);

Status = IQS_BusTriggerStop(&Device);

DSP_Close(&DSP);

ASD_Close(&AnalogMod);

Status = Device_Close(&Device);

23.12 DSP_LPF_DeInit

void DSP_LPF_DeInit(Filter_TypeDef* LPF_ProfileIn)

功能描述

初始化LPF模式的相关参数。LPF模式下的滤波器抽头数、截止频率、阻带衰减等参数统一封装在

Filter_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

Filter_TypeDef* LPF_ProfileIn Filter_TypeDef配置结构体指针，为输入/输出变量。

Filter_TypeDef 详细定义

int n 设置滤波器抽头数（ n > 0 ）。

float fc 设置截止频率 (截止频率/采样率 0 < fc < 0.5)。

float As 设置阻带衰减（ As > 0 , [dB]）。

float mu 设置分数采样偏移量（ -0.5 < mu < 0.5 ）。

uint32_t SamplePts 设置采样点数（Samples > 0）。

返回值 无。

调用约束 在DSP_LPF_Configuration前调用。

示例 请参考DSP_LPF_Execute_Real ()函数相关示例。

API 编程指南 145

23.13 DSP_LPF_Configuration

void DSP_LPF_Configuration(void** DSP, const Filter_TypeDef* LPF_ProfileIn, Filter_TypeDef* LPF

_ProfileOut)

功能描述

配置 LPF模式的相关参数。 LPF模式下的滤波器抽头数、截止频率、阻带衰减等参数统一封装在

Filter_TypeDef结构体中。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

const Filter_TypeDef*

LPF_ProfileIn

Filter_TypeDef配置结构体指针，为输入/输出变量。

请参考DSP_LPF_DeInit ()函数同名结构体参数详细定义。

Filter_TypeDef*

LPF_ProfileOut

Filter_TypeDef配置结构体指针，为输入/输出变量。

请参考DSP_LPF_DeInit ()函数同名结构体参数详细定义。

返回值 无。

调用约束 需要在DSP_LPF_DeInit之后进行调用。

示例 请参考DSP_LPF_Execute_Real ()函数相关示例。

23.14 DSP_LPF_Reset

void DSP_LPF_Reset(void** DSP)

功能描述

重置LPF中的缓存。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

返回值 无。

调用约束 在DSP_Open后调用。

示例 请参考DSP_LPF_Execute_Complex ()函数相关示例。

API 编程指南 146

23.15 DSP_LPF_Execute_Real

void DSP_LPF_Execute_Real(void** DSP, float Signal[], float LPF_Signal[])

功能描述

对实信号进行低通滤波。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

float Signal[] 输入的信号。

float LPF_Signal[] 经过低通滤波后的信号。

返回值 无。

调用约束 在DSP_LPF_Configuration后调用。

示例

int Status = -1;

Sin_TypeDef NCO_Profile;

NCO_Profile.Amplitude = 10; //设置幅值

NCO_Profile.Frequency = 60e3; //设置频率

NCO_Profile.Phase = 0; //设置相位

NCO_Profile.SampleRate = 100e3; //设置采样率

NCO_Profile.Samples = 2000; //设置采样点数

vector<float> sin(NCO_Profile.Samples); //存放产生的实信号

vector<float> LPF_Signal(NCO_Profile.Samples); //存放滤波后的信号

void* DSP = NULL; //开辟数字信号处理地址。

Status = DSP_Open(&DSP); //开启信号处理功能。

Filter_TypeDef LPF_ProfileIn; //配置需要生成滤波器系数的参数

Filter_TypeDef LPF_ProfileOut; //输出生成滤波器系数的参数。

DSP_LPF_DeInit(&LPF_ProfileIn); //初始化配置LPF模式的相关参数。

LPF_ProfileIn.As = 90; //配置滤波器的阻带衰减。

LPF_ProfileIn.fc = 0.25; //配置滤波器截止频率。

LPF_ProfileIn.mu = 0; //配置分数采样偏移量。

LPF_ProfileIn.n = 90; //配置滤波器阶数。

LPF_ProfileIn.Samples = NCO_Profile.Samples; //配置采样点数。

DSP_LPF_Configuration(&DSP, &LPF_ProfileIn, &LPF_ProfileOut); //配置LPF的相关参数。

API 编程指南 147

DSP_GenerateSineWaveform(sin.data(),&NCO_Profile);//生成实信号

DSP_LPF_Execute_Real(&DSP, sin.data(), LPF_Signal.data()); //低通滤波_实信号

Status = DSP_Close(&DSP);

23.16 DSP_LPF_Execute_Complex

void DSP_LPF_Execute_Complex(void** DSP, const IQStream_TypeDef* IQStreamIn, IQStream_Ty

peDef* IQStreamOut)

功能描述

对IQ信号进行低通滤波。

兼容性 0.55.0及之后版本支持

参数说明

void** DSP 运行DSP所需的内存空间引用。

const IQStream_TypeDef*

IQStreamIn

输入IQ数据流的相关信息，包括IQ数据及相关配置信息。

请参考IQS_GetIQStream_PM1()函数同名结构体参数详细定义。

IQStream_TypeDef*

IQStreamOut

输出IQ数据流的相关信息，包括IQ数据及相关配置信息。

请参考IQS_GetIQStream_PM1()函数同名结构体参数详细定义。

返回值 无。

调用约束 在DSP_LPF_Configuration后调用。

示例

int Status = -1;

BootProfile_TypeDef BootProfile;

BootProfile.DevicePowerSupply = USBPortAndPowerPort;

BootProfile.PhysicalInterface = USB;

BootInfo_TypeDef BootInfo;

Status = Device_Open(&Device, DeviceNum, &BootProfile, &BootInfo);

IQS_Profile_TypeDef ProfileIn;

IQS_Profile_TypeDef ProfileOut;

IQS_StreamInfo_TypeDef StreamInfo;

Status = IQS_ProfileDeInit(&Device,&ProfileIn);

Status = IQS_Configuration(&Device, &ProfileIn, &ProfileOut, &StreamInfo);

IQStream_TypeDef IQStream, IQStreamOut;

Status = IQS_BusTriggerStart(&Device);

Status = IQS_GetIQStream_PM1 (&Device, &IQStream);

Status = IQS_BusTriggerStop(&Device);

API 编程指南 148

void* DSP = NULL;

Status = DSP_Open(&DSP);

Filter_TypeDef LPF_ProfileIn,LPF_ProfileOut; IQStream_TypeDef IQStreamOut;

DSP_LPF_DeInit(&LPF_ProfileIn);

DSP_LPF_Configuration(&DSP, &LPF_ProfileIn, &LPF_ProfileIOut);

DSP_LPF_Reset(&DSP);

DSP_LPF_Execute_Complex(&DSP, &IQStream, &IQStreamOut);

Status = DSP_Close(&DSP);

Status = Device_Close(&Device);

API 编程指南 149

24 附录 Appendix 1：API 返回值索引

表7 API 返回值说明

错误代码 错误/警告原因 类型
[1]
 处理

0 无错误 - 无需处理，可正常执行后续过程。

-1 总线打开错误 错误 检查设备供电、数据线连接，检查驱动程序是否正确安装。排除错

误后需要重新调用 Device_Open 以打开设备。

-3 射频校准文件丢失
[2]
 错误 检查射频校准文件是否放置在规定的目录下。排除错误后需要重新

调用 Device_Open 打开设备。

-4 中频校准文件丢失
[2]
 错误 检查中频校准文件是否放置在规定的目录下。排除错误后需要重新

调用 Device_Open 打开设备。

-5 设备配置信息丢失
[2]
 错误 检查所使用的射频校准文件与中频校准文件是否正确。排除错误后

需要重新调用 Device_Open 打开设备。

-6 设备规格文件丢失
[2]
 错误 检查设备规格文件（若需要）是否放置在规定的目录下

-7 更新 Strategy 失败 错误 重新调用 Device_Open 打开设备。

-8 总线通信错误 错误 重新调用当前模式下的配置函数。

-9 数据内容错误 错误 重新调用当前模式下的配置函数。

-10 未在指定时间内获取到数据 警告 检查触发源是否正常输出触发信号，若无异常，可继续调用当前函

数直到取得数据。

-11 通过总线下发配置错误 警告 重新调用 Configuration 函数配置设备。

-12 输入信号幅度超过当前配置

下的额定量程

警告 当前函数获取降低输入信号幅度或适当增大参考电平。

-14 距离最近一次配置，温度产

生较大变化

警告 设备温度距离上一次配置出现较大变化，建议重新调用 Configuratio

n 函数配置设备，以获得最佳性能。

-15 本振或时钟存在锁定异常 警告 本振或时钟存在锁定可能异常，建议重新调用 Configuration 函数配

置设备，尝试恢复正常状态。

[1] 类型为“错误”时，需要立即排除问题，并重新打开设备，否则设备无法继续运行后续流程。类型为

“警告”时，设备可继续后续流程，无需关闭或重新打开设备，但仍然建议针对具体的返回值与当前的应用

场景选择性的处理。

[2] 对于返回值为-3、-4、-5、-6 的情况，还需要确认文件存放路径是否为全英文路径。若路径中包含中文字

符，调用 API 时也会提示文件加载失败。

API 编程指南 150

	1 版本信息
	2 概述
	3 设备及API版本
	4 函数类别简介
	5 API的调用逻辑与调用地图
	5.1 标准扫频分析（SWP）的API调用地图
	5.2 时域信号记录分析（IQS）的API调用地图
	5.3 检波分析（DET）的API调用地图
	5.4 实时频谱分析（RTA）的API调用地图

	6 重要变量/重要设置及其概念
	6.1 系统
	6.2 幅度
	6.3 频率
	6.4 分析
	6.4.1 检波器和迹线检波器

	6.5 默认单位

	7 设备与系统 Device 主要函数
	7.1 Device_Open
	7.2 Device_Close
	7.3 Device_QueryDeviceState
	7.4 Device_QueryDeviceState_Realtime
	7.5 Device_QueryDeviceInfo
	7.6
	7.7 Device_QueryDeviceInfo_Realtime

	8 设备与系统 Device 其他函数
	8.1 Device_SetSysPowerState
	8.2 Device_SetFanState
	8.3 Device_CalibrateRefClock
	8.4 Device_GetNetworkDeviceList
	8.5 Device_SetNetworkDeviceIP
	8.6 Device_SetNetworkDeviceIP_PM1
	8.7 Device_GetFullUID
	8.8 Device_GetHardwareState
	8.9 Device_QueryDeviceInfoWithBus
	8.10 Device_SetFreqScan

	9 系统 Device与GNSS相关函数
	9.1 Device_SetGNSSAntennaState
	9.2 Device_GetGNSSAntennaState
	9.3 Device_GetGNSSAntennaState_Realtime
	9.4 Device_GetGNSSAltitude
	9.5 Device_AnysisGNSSTime
	9.6 Device_SetDOCXOWorkMode
	9.7 Device_GetDOCXOWorkMode
	9.8 Device_GetDOCXOWorkMode_Realtime
	9.9 Device_GetGNSSInfo
	9.10 Device_GetGNSSInfo_Realtime
	9.11 Device_GetGNSS_SatDate
	9.12 Device_GetGNSS_SatDate_Realtime

	10 标准频谱分析 SWP 主要函数
	10.1 SWP_ProfileDeInit
	10.2 SWP_Configuration
	10.3 SWP_AutoSet
	10.4 SWP_GetPartialSweep
	10.5 SWP_GetFullSweep

	11 标准频谱分析 SWP 其他函数
	11.1 SWP_GetPartialSweep_PM1
	11.2 SWP_ResetTraceHold

	12 相位噪声测量模式Phase Noise
	12.1 PNM_ProfileDeInit
	12.2 PNM_Configuration
	12.3 PNM_StartMeasure
	12.4 PNM_StopMeasure
	12.5 PNM_GetPartialUpdatedFullTrace
	12.6 PNM_AutoSearch
	12.7 PNM_Preset_FrameDetRatio
	12.8 PNM_Set_FrameDetRatio

	13 IQ数据记录 IQS 主要函数
	13.1 IQS_ProfileDeInit
	13.2 IQS_Configuration
	13.3 IQS_BusTriggerStart
	13.4 IQS_BusTriggerStop
	13.5 IQS_GetIQStream

	14 IQ数据记录 IQS 其他函数
	14.1 IQS_MultiDevice_WaitExternalSync
	14.2 IQS_MultiDevice_Run
	14.3 IQS_SyncTimer
	14.4 IQS_GetIQStream_PM1
	14.5 IQS_GetIQStream_PM2
	14.6 IQS_GetIQStream_Data

	15 检波分析 DET
	15.1 DET_ProfileDeInit
	15.2 DET_Configuration
	15.3 DET_BusTriggerStart
	15.4 DET_BusTriggerStop
	15.5 DET_GetPowerStream
	15.6 DET_SyncTimer

	16 零扫宽ZeroSpan模式
	16.1 ZSP_ProfileDeInit
	16.2 ZSP_Configuration

	17 实时频谱 RTA
	17.1 RTA_ProfileDeInit
	17.2 RTA_Configuration
	17.3 RTA_BusTriggerStart
	17.4 RTA_BusTriggerStop
	17.5 RTA_GetRealTimeSpectrum_Raw
	17.6 RTA_GetRealTimeSpectrum
	17.7 RTA_SyncTimer

	18 数字解调 Digital Demod（选件）
	18.1 Demod_Check
	18.2 Demod_Open
	18.3 Demod_Close
	18.4 Demod_Reset
	18.5 Demod_GetVersion
	18.6 Demod_DeInit
	18.7 Demod_Configuration
	18.8 Demod_Execute
	18.9 Demod_GenSymbolMap

	19 脉冲检测 Pulse Det（选件）
	19.1 Pulse_Open
	19.2 Pulse_Close
	19.3 Pulse_Detect
	19.4 Pulse_Detect_PM1

	20 辅助信号源 ASG（选件）
	20.1 ASG_ProfileDeInit
	20.2 ASG_Configuration

	21 模拟信号解调 ADM
	21.1 ADM_ Open
	21.2 ADM_Close
	21.3 ADM_AMDemod
	21.4 ADM_FMDemod
	21.5 ADM_AMDemod_PM1
	21.6 ADM_FMDemod_PM1

	22 数字信号处理 DSP 迹线分析
	22.1 DSP_TraceAnalysis_IM3
	22.2 DSP_TraceAnalysis_IM2
	22.3 DSP_TraceAnalysis_ChannelPower
	22.4 DSP_TraceAnalysis_XdBBW
	22.5 DSP_TraceAnalysis_OBW
	22.6 DSP_TraceAnalysis_ACPR
	22.7 DSP_SEMAnalysis

	23 数字信号处理 DSP 流数据的分析与处理
	23.1 DSP_Open
	23.2 DSP_Close
	23.3 DSP_FFT_DeInit
	23.4 DSP_FFT_Configuration
	23.5 DSP_FFT_IQSToSpectrum
	23.6 DSP_DDC_DeInit
	23.7 DSP_DDC_Configuration
	23.8 DSP_DDC_Reset
	23.9 DSP_DDC_GetDelay
	23.10 DSP_DDC_Execute
	23.11 DSP_AudioAnalysis
	23.12 DSP_LPF_DeInit
	23.13 DSP_LPF_Configuration
	23.14 DSP_LPF_Reset
	23.15 DSP_LPF_Execute_Real
	23.16 DSP_LPF_Execute_Complex

	24 附录 Appendix 1：API返回值索引

